Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ \(\Delta'=1-m\ge0\Rightarrow m\le1\)
Để biểu thức xác định \(\Rightarrow f\left(0\right)\ne0\Rightarrow m\ne0\)
Theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\\x_1x_2=m\end{matrix}\right.\)
Mặt khác do \(x_1;x_2\) là nghiệm của pt nên:
\(\left\{{}\begin{matrix}x_1^2-2x_1+m=0\\x_2^2-2x_1+m=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_1^2-3x_1+m=-x_1\\x_2^2-3x_2+m=-x_2\end{matrix}\right.\)
Thay vào ta được:
\(-\frac{x_1}{x_2}-\frac{x_2}{x_1}\le2\Leftrightarrow\frac{x_1^2+x_2^2}{x_1x_2}+2\ge0\)
\(\Leftrightarrow\frac{x_1^2+x_2^2+2x_1x_2}{x_1x_2}\ge0\Leftrightarrow\frac{\left(x_1+x_2\right)^2}{x_1x_2}\ge0\)
\(\Leftrightarrow\frac{4}{m}\ge0\Rightarrow m>0\)
Vậy \(0< m\le1\)
b/ \(\Delta'=m^2-m-2\ge0\Rightarrow\left[{}\begin{matrix}m\ge2\\m\le-1\end{matrix}\right.\)
Theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=m+2\end{matrix}\right.\)
\(x_1^3+x_2^3\le16\)
\(\Leftrightarrow\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)-16\le0\)
\(\Leftrightarrow8m^3-6m\left(m+2\right)-16\le0\)
\(\Leftrightarrow4m^3-3m^2-6m-8\le0\)
\(\Leftrightarrow\left(m-2\right)\left(4m^2+5m+4\right)\le0\)
\(\Leftrightarrow m\le2\) (do \(4m^2+5m+4=4\left(m+\frac{5}{8}\right)^2+\frac{39}{16}>0;\forall m\))
Kết hợp ta được \(\left[{}\begin{matrix}m=2\\m\le-1\end{matrix}\right.\)
a/ \(\Delta=\left(2m+3\right)^2-4\left(m-5\right)=4m^2+8m+4+25\)
\(=4\left(m+1\right)^2+25>0\) \(\forall m\)
Phương trình luôn có 2 nghiệm pb
b/ Theo định lý Viet: \(\left\{{}\begin{matrix}x_1+x_2=2m+3\\x_1x_2=m-5\end{matrix}\right.\)
Ta có: \(\left\{{}\begin{matrix}\frac{1}{x_1}+\frac{1}{x_2}=\frac{x_1+x_2}{x_1x_2}=\frac{2m+3}{m-5}\\\frac{1}{x_1}.\frac{1}{x_2}=\frac{1}{x_1x_2}=\frac{1}{m-5}\end{matrix}\right.\) với \(m\ne5\)
Theo định lý Viet đảo, \(\frac{1}{x_1};\frac{1}{x_2}\) là nghiệm của:
\(x^2-\frac{2m+3}{m-5}x+\frac{1}{m-5}=0\Leftrightarrow\left(m-5\right)x^2-\left(2m+3\right)x+1=0\)