\(\overline{ab}\)\(-\overline{ba}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 5 2017

Đăng từ từ từng câu thoy bn!!

6 tháng 12 2017

bài 2 : 

a, abcdeg = ab.10000 + cd.100 + eg

             = ab.9999 + ab + cd.99 + cd + eg

             = (ab.9999 + cd.99) + (ab+cd+eg)

vì 9999 chia hết cho 11 => ab.9999 chia hết cho 11    (1)

    99 chia hết cho 11 => cd.99 chia hết cho 11          (2)

    theo đề bài (ab+cd+eg) chi hết cho 11                 (3)

(1)(2)(3) => abcdeg chia hết cho 11

phần b thì bạn chứng minh 10^28 + 8 chi hết cho 8 và 9 là được

28 tháng 12 2017

a) Ta có:
\(\overline{abcdeg}=10000.\overline{ab}+100.\overline{cd}+eg=9999.\overline{ab}+99.\overline{cd}+\left(\overline{ab}+\overline{cd}+\overline{eg}\right)\)\(9999.\overline{ab}⋮11\)
\(99.\overline{cd}⋮11\)
\(\overline{ab}+\overline{cd}+\overline{eg}⋮11\)
\(\Rightarrow9999.\overline{ab}+99.\overline{cd}+\left(\overline{ab}+\overline{cd}+\overline{eg}\right)⋮11\)hay \(\overline{abcdeg}⋮11\)(đpcm)
b) Ta có:
\(E=92-\dfrac{1}{9}-\dfrac{2}{10}-\dfrac{3}{11}-...-\dfrac{92}{100}=\left(1-\dfrac{1}{9}\right)+\left(1-\dfrac{2}{10}\right)+\left(1-\dfrac{3}{11}\right)+...\left(1-\dfrac{92}{100}\right)=\dfrac{8}{9}+\dfrac{8}{10}+\dfrac{8}{11}+...+\dfrac{8}{100}=8.\left(\dfrac{1}{9}+\dfrac{1}{10}+\dfrac{1}{11}+...+\dfrac{1}{100}\right)\)\(F=\dfrac{1}{5}\left(\dfrac{1}{9}+\dfrac{1}{10}+\dfrac{1}{11}+...+\dfrac{1}{100}\right)\)
\(\dfrac{E}{F}=\dfrac{8\left(\dfrac{1}{9}+\dfrac{1}{10}+\dfrac{1}{11}+...+\dfrac{1}{100}\right)}{\dfrac{1}{5}\left(\dfrac{1}{9}+\dfrac{1}{10}+\dfrac{1}{11}+...+\dfrac{1}{100}\right)}=\dfrac{8}{\dfrac{1}{5}}=40\)

7 tháng 10 2016

Đại số lớp 6

21 tháng 10 2016

vẽ con rồng à

 

30 tháng 3 2020

ai biết làm câu nào thì làm giúp mik nha

30 tháng 3 2020

a) Mình nghĩ nên sửa lại đề 1 chút: a-b=3

b) Có 4n-9=2(2n+1)-13

Vì 2n+1 chia hết cho 2n+1 => 2(2n+1) chia hết cho 2n+1

Vậy để 2(2n+1)-13 chia hết cho 2n+1

=> 13 chia hết cho 2n+1

n nguyên => 2n+1 nguyên => 2n+1\(\inƯ\left(13\right)=\left\{-13;-1;1;3\right\}\)

Ta có bảng

2n+1-13-113
2n-14-202
n-7-101

d)Đặt \(A=\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+....+\frac{1}{2^n}\)

Ta có: \(\hept{\begin{cases}\frac{1}{2^2}< \frac{1}{1\cdot2}\\......\\\frac{1}{2^n}< \frac{1}{2^{n-1}\cdot2^n}\end{cases}}\)

\(\Rightarrow A< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+....+\frac{1}{2^{n-1}\cdot2^n}\)

\(\Rightarrow A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{2^{n-1}}-\frac{1}{2^n}\)

\(\Rightarrow A< 1-\frac{1}{2^n}\)(đpcm)

5 tháng 6 2017

Bạn gì ơi đăng thì đăng ít bài 1 thôi bạn đăng nhiều thế chẳng ai làm hết đc đâu

5 tháng 6 2017

Mình làm bài 4 

Ta có ; 7n và 7n + 1 là 2 số nguyên liên tiếp 

Mà ƯCLN của 2 số nguyên liên tiếp luôn luôn bằng 1

Vậy phân số : \(\frac{7n}{7n+1}\) luôn luôn tối giản với mọi n

6 tháng 8 2017

a, \(\overline{357a}⋮2\Leftrightarrow a=0;2;4;6;8\) (thỏa mãn)
b, \(\overline{429a}⋮5\Leftrightarrow a=0;5\) (thỏa mãn)
c, \(\overline{3a51a}⋮9\Leftrightarrow\left(3+a+5+1+a\right)⋮9\)
<=> 9 + 2a \(⋮9\)
<=> 2a \(⋮9\)
Mà a là chữ số => a = 0; 9 (thỏa mãn)
d, \(\overline{4a231}⋮3\Leftrightarrow\left(4+a+2+3+1\right)⋮3\)
<=> 10 + a \(⋮3\)
<=> 9 + 1 + a \(⋮3\)
<=> 1 + a \(⋮3\)
Mà a là chữ số => a = 2; 5; 8 (thỏa mãn)
e, \(\overline{5a37a}⋮10\Rightarrow\overline{5a37a}⋮5\Rightarrow a=0;5\)
\(\overline{5a37a}⋮2\Rightarrow a=0\) (thỏa mãn)
@Đỗ Hàn Thục Nhi