Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
với n=0 thì A0=6+25=31 chia hết cho 6
giả sử A đúng với n=k tức là Ak=62K+1+5k+2 chia hết cho 31 ta cần chứng minh A đúng với n=k+1 tức là:
Ak+1=62(k+1)+1+5(k+1)+2 chia hết cho 31. Thật vậy:
Ak+1=62(k+1)+1+5(k+1)+2
=62k+3+5k+3
\(=6^2\cdot6^{2k+1}+5^1\cdot5^{k+1}\)
\(=5\left(6^{2k+1}+5^{k+1}\right)+31\cdot6^{2k+1}\)
\(=5\cdot A_k+31\cdot6^{2k+1}\)
Do AK chia hết cho 31 nêm 5*AK chia hết cho 31,31 chia hết cho 31 nên 31*62k+1
suy ra đpcm
đề sai nhé chị
ta có 31^n+1-31^n=31^n(31^1-1)=30*31^n
mà 30 chia hết cho 5 nên => 31^n+1-31^n chia hết cho 5
a)
Ta có: 13n+1 - 13n
= 13n . 13 - 13n
= 13n (13 - 1)
= 13n . 12 \(⋮\) 12
Vậy: 13n+1 - 13n \(⋮\) 12 vs mọi số tự nhiên n
b)
Ta có: n3 - n = n (n2 - 1)
= (n - 1).n.(n+1) \(⋮\) 6 (vì tích 3 số tự nhiên liên tiếp luôn chia hết cho 6)
1. Phải là \((a+b+c)^{\color{red}{2}}=3(ab+bc+ac)\) chứ nhỉ?
VD: Với \(a=b=c=1\) thì \((a+b+c)^3=27\ne 3(ab+bc+ac)=9\) !!!
Mình chép nhầm đề đáng lẽ là mũ 2 nhưng lại chép thành mũ 3 bạn biết giải giải hộ mình với nhé
Bài 1:
b:
x=9 nên x+1=10
\(M=x^{10}-x^9\left(x+1\right)+x^8\left(x+1\right)-x^7\left(x+1\right)+...-x\left(x+1\right)+x+1\)
\(=x^{10}-x^{10}-x^9+x^9+x^8-x^8-x^7+...-x^2-x+x+1\)
=1
c: \(N=\left(1+2+2^2+2^3+2^4\right)+2^5\left(1+2+2^2+2^3+2^4\right)+2^{10}\left(1+2+2^2+2^3+2^4\right)\)
\(=31\left(1+2^5+2^{10}\right)⋮31\)
Bài 3:
a: \(=35^{2018}\left(35-1\right)=35^{2018}\cdot34⋮17\)
b: \(=43^{2018}\left(1+43\right)=43^{2018}\cdot44⋮11\)
dề sai roi
đáng lẽ phải chia hết cho 33 chứ