Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chứng minh:
a)\(11+6\sqrt{2}=\left(3+\sqrt{2}\right)^2\)
b)\(8-2\sqrt{7}=\left(\sqrt{7}-1\right)^2\)
a/ \(11+6\sqrt{2}=9+2\cdot3\cdot\sqrt{2}+2=\left(3+\sqrt{2}\right)^2\left(đpcm\right)\)
b/ \(8-2\sqrt{7}=\sqrt{7}^2-2\sqrt{7}\cdot1+1=\left(\sqrt{7}-1\right)^2\left(đpcm\right)\)
Ta có:a)11+6\(\sqrt{2}\) =\(9+2.3.\sqrt{2}+2\) =\(3^2+2.3.\sqrt{2}+\left(\sqrt{2}\right)^2\)=\(\left(3+\sqrt{2}\right)^2\)
b) \(8-2\sqrt{7}\) = \(7-2.1.\sqrt{7}+1\) =\(\left(\sqrt{7}\right)^2-2.1.\sqrt{7}+1^2\) =\(\left(\sqrt{7}-1\right)^2\)
1: Chứng minh
a) Ta có: \(VT=11+6\sqrt{2}\)
\(=9+2\cdot3\cdot\sqrt{2}+2\)
\(=\left(3+\sqrt{2}\right)^2=VP\)(đpcm)
b) Ta có: \(VP=\left(\sqrt{7}-1\right)^2\)
\(=7-2\cdot\sqrt{7}\cdot1+1\)
\(=8-2\sqrt{7}=VT\)(đpcm)
c) Ta có: \(VT=\left(5-\sqrt{3}\right)^2\)
\(=25-2\cdot5\cdot\sqrt{3}+3\)
\(=28-10\sqrt{3}=VP\)(đpcm)
d) Ta có: \(VP=\sqrt{4+2\sqrt{3}}-\sqrt{4-2\sqrt{3}}\)
\(=\sqrt{3+2\cdot\sqrt{3}\cdot1+1}-\sqrt{3-2\cdot\sqrt{3}\cdot1+1}\)
\(=\sqrt{\left(\sqrt{3}+1\right)^2}-\sqrt{\left(\sqrt{3}-1\right)^2}\)
\(=\left|\sqrt{3}+1\right|-\left|\sqrt{3}-1\right|\)
\(=\sqrt{3}+1-\left(\sqrt{3}-1\right)\)
\(=\sqrt{3}+1-\sqrt{3}+1\)
\(=2=VT\)(đpcm)
thêm dòng này nữa :33
⇔ 11 + \(6\sqrt{2}=11+6\sqrt{2}\left(đpcm\right)\)
1) \(\left(\sqrt{6}-\sqrt{8}\right)\left(\sqrt{6}+\sqrt{8}\right)\)
\(=\left(\sqrt{6}\right)^2-\left(\sqrt{8}\right)^2\)
\(=6-8=-2\)
2) \(\left(3-\sqrt{5}\right)\left(3+\sqrt{5}\right)\)
\(=3^2-\left(\sqrt{5}\right)^2\)
\(=9-5=4\)
3) \(\sqrt{7-4\sqrt{3}}+\sqrt{7+4\sqrt{3}}\)
\(=\sqrt{4-4\sqrt{3}+3}+\sqrt{4+4\sqrt{3}+3}\)
\(=\sqrt{\left(2-\sqrt{3}\right)^2}+\sqrt{\left(2+\sqrt{3}\right)^2}\)
\(=2-\sqrt{3}+2+\sqrt{3}=4\)
4) Xét ta thấy: \(2\sqrt{3}=\sqrt{12}< \sqrt{16}=4\)
=> \(2\sqrt{3}-4< 0\) => vô lý không tm đk căn
g, h. Câu hỏi của Nữ hoàng sến súa là ta - Toán lớp 9 - Học toán với OnlineMath
\(1,\sqrt{\left(-0,3\right)^2}=\sqrt{0,09}=0,3\)
\(2,-\frac{1}{2}\sqrt{\left(0,3\right)^2}=-\frac{1}{2}.0,3=-0,15\)
\(3,\sqrt{a^{10}}=\sqrt{\left(a^5\right)^2}=a^5\left(a\ge0\right)\)
\(4,\sqrt{\left(2-x\right)^2}=\left|2-x\right|=2-x\left(x\le2\right)\)
\(5,\sqrt{x^2+2x+1}=\sqrt{\left(x+1\right)^2}=\left|x+1\right|\)
\(6,\sqrt{\left(1-\sqrt{2}\right)^2}=\left|1-\sqrt{2}\right|=\sqrt{2}-1\)(Vì \(1< \sqrt{2}\))
\(7,\sqrt{11+6\sqrt{2}}=\sqrt{9+6\sqrt{2}+2}=\sqrt{\left(3+\sqrt{2}\right)^2}=3+\sqrt{2}\)
\(8,\sqrt{8-2\sqrt{7}}-\sqrt{8+2\sqrt{7}}=\sqrt{7-2\sqrt{7}+1}-\sqrt{7+2\sqrt{7}+1}\)
\(=\sqrt{\left(\sqrt{7}-1\right)^2}-\sqrt{\left(\sqrt{7}+1\right)^2}\)
\(=\left(\sqrt{7}-1\right)-\left(\sqrt{7}+1\right)\)
\(=-2\)
\(9,\sqrt{6+2\sqrt{5}}+\sqrt{6-2\sqrt{5}}=\sqrt{5+2\sqrt{5}+1}+\sqrt{5-2\sqrt{5}+1}\)
\(=\sqrt{\left(\sqrt{5}+1\right)^2}+\sqrt{\left(\sqrt{5}-1\right)^2}\)
\(=\sqrt{5}+1+\sqrt{5}-1\)
\(=2\sqrt{5}\)
1: \(=\sqrt{36}=6\)
2: \(=\sqrt{\left(15-9\right)\left(15+9\right)}=\sqrt{24\cdot6}=12\)
3: \(=3\sqrt{5}-1-3\sqrt{5}-1=-2\)
4: \(=3\sqrt{2}+\sqrt{3}-3\sqrt{2}+\sqrt{3}=2\sqrt{3}\)
5: \(=\left(2+\sqrt{5}\right)\left(\sqrt{5}-2\right)=5-4=1\)
a, phân tích vế trái ta được:
11+6\(\sqrt{2}\)=9+2.3.\(\sqrt{2}\)+2=(3+\(\sqrt{2}\))2\(\)=VP(dpcm)
b,phân tích vế trái ta được
\(\sqrt{11+6\sqrt{ }2}\)+\(\sqrt{11-6\sqrt{ }2}\)=|3+\(\sqrt{2}\)|+|3-\(\sqrt{2}\)|=6=VP(dpcm)
a,phân tích vế trái ta được
8-2\(\sqrt{7}\)=7-2\(\sqrt{7}\)+1=(\(\sqrt{7}\)-1)2
câu b sai đề nha
Ta có a) \(11+6\sqrt{2}=9+2\times3\times\sqrt{2}+2=\left(3+\sqrt{2}\right)^2\)
b) \(\sqrt{11+6\sqrt{2}}+\sqrt{11-6\sqrt{2}}=\sqrt{\left(3+\sqrt{2}\right)^2}+\sqrt{\left(3-\sqrt{2}\right)^2}\)
\(=3+\sqrt{2}+3-\sqrt{2}=6\)