Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Tổng ba góc của một tam giác là 180
vậy góc A=180*2/5 =72 biết \(\frac{1}{2}\)A là 1,E là 2
sau khi biết góc A thì tính góc E; E=180-72=108
Cứ tương tự mà bạn làm tiếp nhé giờ mình phải đi học rồi

Ta có \(\widehat{A}+\widehat{B}+\widehat{C}=180\)
Lại có: \(\frac{\widehat{A}}{3}=\frac{\widehat{B}}{4}=\frac{\widehat{C}}{5}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{\widehat{A}}{3}=\frac{\widehat{B}}{4}=\frac{\widehat{C}}{5}=\frac{\widehat{A}+\widehat{B}+\widehat{C}}{3+4+5}=\frac{180}{12}=15\)
Suy ra \(\widehat{A}=3\cdot15=45\)độ, \(\widehat{B}=4\cdot15=60\)độ, \(\widehat{C}=15\cdot5=75\)độ
Chúc bạn học tốt!
Tk giúp mk nha
Ta có : \(\widehat{A}+\widehat{B}+\widehat{C}\)=180o ( tổng 3 góc của tam giác )
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{\widehat{A}}{3}=\frac{\widehat{B}}{4}=\frac{\widehat{C}}{5}=\frac{\widehat{A}+\widehat{B}+\widehat{C}}{3+4+5}=\frac{180^o}{12}=15^o\)
\(\hept{\begin{cases}\frac{\widehat{A}}{3}=15^o\Rightarrow\widehat{A}=15^o.3=45^o\\\frac{\widehat{B}}{4}=15^o\Rightarrow\widehat{B}=15^o.4=60^o\\\frac{\widehat{C}}{5}=15^o\Rightarrow\widehat{C}=15^o.5=75^o\end{cases}}\)
Vậy góc A=45o ; góc B=60o ; góc C=75o

Theo đề bài ta có: \(\widehat{A}+\widehat{B}+\widehat{C}=180^o\) và \(\dfrac{\widehat{A}}{3}=\dfrac{\widehat{B}}{5}=\dfrac{\widehat{C}}{7}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\dfrac{\widehat{A}}{3}=\dfrac{\widehat{B}}{5}=\dfrac{\widehat{C}}{7}=\dfrac{\widehat{A}+\widehat{B}+\widehat{C}}{3+5+7}=\dfrac{180^o}{15}=12^o\)
\(\Rightarrow\widehat{A}=12^o.3=36^o\)
\(\widehat{B}=12^o.5=60^o\)
\(\widehat{C}=12^o.7=84^o\)
nếu số đo (độ) các góc của tam giác ABC là A , B , C (độ) thì theo điều kiện bài ra và tính chất của dãy tỉ số bằng nhau , ta có \(\dfrac{A}{3}=\dfrac{B}{5}=\dfrac{C}{7}=\dfrac{A+B+C}{3+5+7}=\dfrac{180}{15}=12\)
vậy : A = 3 . 12 = 36
B = 5 . 12 = 60
C = 7 . 12 = 84
=> A = 36 (độ) ; B = 60 (độ) ; C = 84 (độ)

Bài 1:
Xét \(\Delta ABC\) có:
\(\widehat{A}+\widehat{B}+\widehat{C}=180^o\)(ĐL tổng 3 góc 1 \(\Delta\))
\(\Rightarrow30^o+70^o+\widehat{C}=180^o\) (Vì \(\widehat{A}=30^o;\widehat{B}=70^o\) (gt))
\(\Rightarrow\widehat{C}=180^o-30^o-70^o=80^o\)
Bài 2:
Xét \(\Delta ABC\) (vuông tại A) có:
\(\widehat{B}+\widehat{C}=90^o\) (Tc \(\Delta\) vuông)
\(\Rightarrow\widehat{B}+40^o=90^o\) (Vì \(\widehat{C}=40^o\) (gt))
\(\Rightarrow\widehat{B}=90^o-40^o=50^o\)
Giải:
+) Ta có: \(\widehat{A}+\widehat{B}+\widehat{C}=180^o\) ( 3 góc của tam giác )
\(\Rightarrow30^o+70^o+\widehat{C}=180^o\)
\(\Rightarrow\widehat{C}=80^o\)
Vậy...
+) Ta có: \(\widehat{B}+\widehat{C}=90^o\) ( do tam giác có \(\widehat{A}=90^o\) )
\(\Rightarrow40^o+\widehat{B}=90^o\)
\(\Rightarrow\widehat{B}=50^o\)
Vậy...

De cho gon dat ^BAC = A = 75°; ^ABC = B; ^ACB = C; BC = a; CA = b; AB = c
cosA = cos75° = cos(45° + 30°) = cos45°cos30° - sin45°sin30° = ( √6 - √2)/4
Theo gia thiet vs theo dinh ly hs cosin
{ c + b√2 = 2a (1)
{ a² = b² + c² - 2bc.cosA
<=>
{ 2b² + c² + 2√2bc = 4a²
{ 4b² + 4c² - 2(√6 - √2)bc = 4a²
Tru 2 pt cho nhau :
2b² + 3c² - 2√6bc = 0 <=> (√2b - √3c)² = 0 <=> √2b - √3c = 0
<=> √2sinB - √3sinC = 0 (theo dinh ly hs sin)
<=> sinC = √2.sinB/√3 (1)
Mat khac :
C = 105° - B <=> sinC = sin(105° - B) = sin105°cosB - cos105°sinB (2)
voi sin105° = sin75° = √(1 - cos²75°) = (2 + √3)/4 (3)
cos105° = - cos75° = (√2 - √6)/4 (4)
Thay (1); (3); (4) vao (2) rut gon ta co :
tanB = (3 + 2√3)/(√6 + √2) = (√6 + 3√2)/4
=> B; C
A B C D E
Về phía ngoài của \(\Delta\)ABC vẽ \(\Delta\)ACD vuông cân tại C.
Trên nửa mặt phẳng bờ AD không chứa B và C vẽ \(\Delta\)ADE đều.
Dễ dàng tính được: \(\widehat{BAC}=180^0-\left(\widehat{ABC}+\widehat{ACB}\right)=180^0-105^0=75^0\)
Do \(\Delta\)ACD vuông cân tại C => \(\widehat{CAD}=45^0\); \(\Delta\)ADE đều => \(\widehat{DAE}=60^0\)
=> \(\widehat{ABC}+\widehat{CAD}+\widehat{DAE}=75^0+45^0+60^0=180^0\)
=> 3 điểm B;A;E là 3 điểm thẳng hàng => \(AB+AE=BE\)(1)
Xét \(\Delta\)ACD: \(\widehat{ACD}=90^0;AC=CD\)=> \(AD^2=AC^2+CD^2=2.AC^2\)(ĐL Pytago)
=> \(AD=\sqrt{2}.AC\). Mà \(\Delta\)ADE đều => AD=AE\(\Rightarrow AE=\sqrt{2}.AC\)(2)
Từ (1) và (2) => \(BE=AB+AC.\sqrt{2}\).
Lại có: \(AB+AC.\sqrt{2}=2BC\)=> \(BE=2.BC\)
Ta thấy: EA=ED; CA=CD => E và C thuộc đường trung trực của AD => EC\(\perp\)AD (3)
=> \(\widehat{AEC}=30^0\)hay \(\widehat{BEC}=30^0\)
Xét \(\Delta\)ECB có: \(\widehat{BEC}=30^0\); \(BE=2.BC\)=> \(\Delta\)ECB vuông tại C hay EC\(\perp\)BC (4)
Từ (3) và (4) => AD // BC => \(\widehat{BCA}=\widehat{CAD}\)(So le trong). Mà \(\widehat{CAD}=45^0\)\(\Rightarrow\widehat{BCA}=45^0.\)
Vậy \(\widehat{BCA}=45^0\).
.

1 a,Ta có ∆ ABC= ∆ HIK, nên cạnh tương ứng với BC là cạnh IK
góc tương ứng với góc H là góc A.
ta có : ∆ ABC= ∆ HIK
Suy ra: AB=HI, AC=HK, BC=IK.
=
,
=
,
=
.
b,
∆ ABC= ∆HIK
Suy ra: AB=HI=2cm, BC=IK=6cm, =
=400
2.
Ta có ∆ABC= ∆ DEF
Suy ra: AB=DE=4cm, BC=EF=6cm, DF=AC=5cm.
Chu vi của tam giác ABC bằng: AB+BC+AC= 4+5+6=15 (cm)
Chu vi của tam giác DEF bằng: DE+EF+DF= 4+5+6=15 (cm
Ở đây: Ta thấy: \(\sqrt{32}=\sqrt{2^5}=4\sqrt{2}\)
Suy ra: \(\sqrt{32}>4\)
Ta có:
\(KI^2=\left(\sqrt{32}\right)^2=32\)
Và \(GI^2+GK^2=4^2+4^2=16+16=32\)
Suy ra: \(KI^2=GI^2+GK^2\)
Áp dụng định lí Pytago đảo:
Ta có: tam giác GIK vuông tại G
Suy ra góc G bằng 90 độ
Hơn nữa GI=GK=4 cm
Suy ra tam giác GIK là tam giác vuông cân
Vậy \(\hept{\begin{cases}\widehat{G}=90^o\\\widehat{I}=45^o\\\widehat{K}=45^o\end{cases}}\)