Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hướng giải:
a) Hình chữ nhật : dấu hiệu tứ giác có 3 góc vuông là hình chữ nhật
b) C/m IN là đg tb của tam giác ABC => NA = NC
Tứ giác ADCI là hình thoi: dấu hiệu hai đg chéo vuông góc với nhau và cắt nhau tại trung điểm mỗi đường
c) BC cắt DC tại C chứ. (hai đoạn này chỉ có 1 điểm chung)
*CHÚ Ý: phía trên ko phải là bài giải. Chỉ lả gợi ý giải.
A B C M E N F
a, chỉ cần cm ME ko song song với BC
b, Kẻ EF song song với AB
Xét tg ABC có EF // AB => \(\hept{\begin{cases}\frac{BF}{BC}=\frac{AE}{AC}=\frac{1}{4}\left(1\right)\\\frac{AB}{EF}=\frac{AC}{EC}=\frac{4}{3}\end{cases}}\)
Mà M là trung điểm AB nên \(MB=MA=\frac{1}{2}AB\)=>\(\frac{MB}{EF}=\frac{2}{3}\)
Do AB // EF mà M thuộc AB => MB // EF
=> \(\frac{NB}{NF}=\frac{MB}{EF}=\frac{2}{3}\)=>\(\frac{NB}{BF}=2\)(2)
Từ (1) và (2) => \(\frac{NB}{BC}=\frac{1}{2}\)
Câu này chỉ cần áp dụng định lý Ta let:
a. Do E không là trung điểm AC nên ME không song song BC. Vậy ME cắt BC.
b. Kẻ EH // BC, H thuộc AB. Áp dụng định lý Talet: \(\frac{AE}{AC}=\frac{AH}{AB}=\frac{HE}{BC}=\frac{1}{4}\left(1\right)\)
Lại do M là trung điểm AB nên H là trung điểm MA. Áp dụng Talet:
\(\frac{HE}{NB}=\frac{MH}{MB}=\frac{MH}{MA}=\frac{1}{2}\left(2\right)\)
Từ (1) và (2) ta suy ra BC = 2BN.
Câu 1.
Qua $D$ vẽ đường thẳng song song với $OB$, cắt $AC$ tại $M$
Xét $\Delta ADM$ có $OK//DM$
$\Rightarrow \dfrac{AK}{KM}=\dfrac{OA}{OD}$ (định lí Ta-lét)
Nên $\dfrac{AK}{KM}=\dfrac{3}{2}$ (vì $\dfrac{OA}{OD}=\dfrac{3}{2}$)
Xét $\Delta BKC$ có $DM//BK$
$\Rightarrow \dfrac{KM}{CM}=\dfrac{DB}{DC}$ (định lí Ta-lét)
Nên $\dfrac{KM}{CM}=\dfrac{1}{2}$ (vì $\dfrac{DB}{DC}=\dfrac{1}{2}$) $\Rightarrow \dfrac{KM}{KM+CM}=\dfrac{1}{1+2} \Rightarrow \dfrac{KM}{KC}=\dfrac{1}{3}$
Do đó $\dfrac{AK}{KC}=\dfrac{AK}{KM}.\dfrac{KM}{KC}=\dfrac{3}{2}.\dfrac{1}{3}=\dfrac{1}{2}$
Hình vẽ câu 1 chỉ mang tính chất minh họa.