Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B A K C H(-1;1) 4x+3y-13=0 x-y+1=0
Gọi K là điểm đối xứng với H qua đường phân giác trong góc A. Khi đó K thuộc đường thẳng AC. Đường thẳng HK có phương trình \(x+y+2=0\)
Gọi I là giao điểm của HK và đường phân giác trong góc A thì I có tọa độ là nghiệm của hệ :
\(\begin{cases}x-y+2=0\\x+y+2=0\end{cases}\)\(\Leftrightarrow\begin{cases}x=-2\\y=0\end{cases}\)\(\Rightarrow I\left(-2;0\right)\)
I là trung điểm HK nên suy ta \(K\left(-3;1\right)\)
Khi đó AC :\(3\left(x+3\right)-4\left(y-1\right)=0\Leftrightarrow3x-4y+1=0\)
A có tọa độ thỏa mãn : \(\begin{cases}x-y+2=0\\3x-4y+13=0\end{cases}\)\(\Leftrightarrow\begin{cases}x=5\\y=7\end{cases}\)\(\Leftrightarrow A\left(5;7\right)\)
AB có phương trình : \(\frac{x+1}{6}=\frac{y+1}{8}\Leftrightarrow4x-3y+1=0\)
B có tọa độ thỏa mãn : \(\begin{cases}4x+3y-1=0\\4x-3y+1=0\end{cases}\)\(\Leftrightarrow\begin{cases}x=0\\y=\frac{1}{3}\end{cases}\)\(\Rightarrow B\left(0;\frac{1}{3}\right)\)
HC có phương trình : \(3\left(x+1\right)+4\left(y+1\right)=0\Leftrightarrow30+4y+7=0\)
C có tọa độ thỏa mãn hệ phương trình :
\(\begin{cases}3x+4y+7=0\\3x-4y+13=0\end{cases}\)\(\begin{cases}x=-\frac{10}{3}\\y=\frac{3}{4}\end{cases}\)\(\Rightarrow C\left(-\frac{10}{3};\frac{3}{4}\right)\)
cho mk hs: tai sao K thuoc duong thang AC thi HK co phuong trinh nhu vay ak
Do C là 1 đỉnh trên trục lớn của elip đồng thời tam giác ABC đều \(\Rightarrow\) AB vuông góc trục lớn elip \(\Rightarrow\)A và B nằm về 2 phía trục hoành. Giả sử A là điểm có tung độ dương
Gọi H là trung điểm AB \(\Rightarrow H\in Ox\Rightarrow H\left(h;0\right)\) đồng thời \(x_A=x_H=h\) và \(\left|h\right|< 2\)
\(\dfrac{h^2}{4}+\dfrac{y_A^2}{1}=1\Rightarrow y_A=\sqrt{1-\dfrac{h^2}{4}}\)
Tam giác ABC đều \(\Rightarrow\widehat{ACB}=60^0\Rightarrow\widehat{ACH}=30^0\)
\(tan30^0=\dfrac{AH}{CH}=\dfrac{y_A}{x_C-x_H}=\dfrac{\sqrt{1-\dfrac{h^2}{4}}}{2-h}=\dfrac{1}{\sqrt{3}}\)
\(\Leftrightarrow12-3h^2=4\left(2-h\right)^2\)
\(\Leftrightarrow7h^2-16h+4=0\Rightarrow\left[{}\begin{matrix}h=\dfrac{2}{7}\\h=2\left(loại\right)\end{matrix}\right.\)
\(\Rightarrow y_A=\sqrt{1-\dfrac{h^2}{4}}=\dfrac{4\sqrt{3}}{7}\)
Vậy tọa độ 2 điểm A và B là \(\left(\dfrac{2}{7};\dfrac{4\sqrt{3}}{7}\right)\) và \(\left(\dfrac{2}{7};-\dfrac{4\sqrt{3}}{7}\right)\)
Đường cao xuất phát từ đỉnh nào? Đỉnh A?
\(\overrightarrow{BC}=\left(4;-6\right)=2\left(2;-3\right)\)
Pt BC: \(3\left(x-1\right)+2\left(y+2\right)=0\Leftrightarrow3x+2y+1=0\)
Gọi AH là đường cao xuất phát từ A \(\Rightarrow AH\perp BC\)
\(\Rightarrow\) Đường thẳng AH nhận \(\left(2;-3\right)\) là 1 vtpt
Phương trình AH: \(2\left(x-3\right)-3\left(y+1\right)=0\Leftrightarrow2x-3y-9=0\)
H là giao điểm AH và BC nên tọa độ là nghiệm:
\(\left\{{}\begin{matrix}3x+2y+1=0\\2x-3y-9=0\end{matrix}\right.\) \(\Rightarrow H\left(\frac{15}{13};-\frac{29}{13}\right)\)
2.
Gọi I là trung điểm EF \(\Rightarrow I\left(1;1\right)\)
\(\overrightarrow{EF}=\left(2;-4\right)=2\left(1;-2\right)\)
Trung trực EF vuông góc EF và qua I nên có pt:
\(1\left(x-1\right)-2\left(y-1\right)=0\Leftrightarrow x-2y+1=0\)
M là giao điểm d và trung trực EF nên tọa độ là nghiệm:
\(\left\{{}\begin{matrix}x-2y+1=0\\x-y+2=0\end{matrix}\right.\) \(\Rightarrow M\left(-3;-1\right)\)