\(n\inℕ^∗\)và a,b dương , chứng minh:

\(\frac{1}{a^n}+\f...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 2 2020

Bài này bạn chỉ cần chuyển vế biến đổi thôi là được , mình làm mẫu câu 2) :

\(\frac{a^2}{m}+\frac{b^2}{n}\ge\frac{\left(a+b\right)^2}{m+n}\)

\(\Leftrightarrow\frac{a^2n+b^2m}{mn}-\frac{\left(a+b\right)^2}{m+n}\ge0\)

\(\Leftrightarrow\frac{\left(m+n\right)\left(a^2n+b^2m\right)-\left(a^2+2ab+b^2\right).mn}{mn\left(m+n\right)}\ge0\)

\(\Leftrightarrow\frac{a^2mn+\left(bm\right)^2+\left(an\right)^2+b^2mn-a^2mn-2abmn-b^2mn}{mn\left(m+n\right)}\ge0\)

\(\Leftrightarrow\frac{\left(bm-an\right)^2}{mn\left(m+n\right)}\ge0\) ( luôn đúng )

Dấu "=" xảy ra \(\Leftrightarrow bm=an\)

Câu 3) áp dụng câu 2) để chứng minh dễ dàng hơn, ghép cặp 2 .

NV
27 tháng 2 2020

a/ Bạn cứ khai triển biến đổi tương đương thôi (mà làm biếng lắm)

b/ Đặt \(\left(a;b;c\right)=\left(\frac{1}{x};\frac{1}{y};\frac{1}{z}\right)\Rightarrow xyz=1\)

\(VT=\frac{x^3yz}{y+z}+\frac{y^3zx}{z+x}+\frac{xyz^3}{x+y}=\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\)

\(VT\ge\frac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\frac{1}{2}\left(x+y+z\right)\ge\frac{1}{2}.3\sqrt[3]{xyz}=\frac{3}{2}\)

Dấu "=" xảy ra khi \(x=y=z=1\) hay \(a=b=c=1\)

27 tháng 2 2020

cảm ơn bạn nhưng nạ có thể giải nốt cậu a hộ mình đc ko

leuleu

2 tháng 3 2020

b) với mọi a,b,c ϵ R và x,y,z ≥ 0 có :
\(\frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z}\ge\frac{\left(a+b+c\right)^2}{x+y+z}\left(1\right)\)
Dấu ''='' xảy ra ⇔\(\frac{a}{x}=\frac{b}{y}=\frac{c}{z}\)
Thật vậy với a,b∈ R và x,y ≥ 0 ta có:
\(\frac{a^2}{x}=\frac{b^2}{y}\ge\frac{\left(a+b\right)^2}{x+y}\left(2\right)\)
\(\frac{a^2y}{xy}+\frac{b^2x}{xy}\ge\frac{\left(a+b\right)^2}{x+y}\)
\(\frac{a^2y+b^2x}{xy}\ge\frac{\left(a+b\right)^2}{x+y}\)
\(\frac{a^2y+b^2x}{xy}.\left(x+y\right)xy\ge\frac{\left(a+b\right)^2}{x+y}.\left(x+y\right)xy\)
\(\left(a^2y+b^2x\right)\left(x+y\right)\ge\left(a+b\right)^2xy\)
\(a^2xy+b^2x^2+a^2y^2+b^2xy\ge a^2xy+2abxy+b^2xy\)
\(b^2x^2+a^2y^2-2abxy\ge0\)
\(\left(bx-ay\right)^2\ge0\)(luôn đúng )
Áp dụng BĐT (2) có:
\(\frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z}\ge\frac{\left(a+b\right)^2}{x+y}+\frac{c^2}{z}=\frac{\left(a+b+c\right)^2}{x+y+z}\)
Dấu ''='' xảy ra ⇔\(\frac{a}{x}=\frac{b}{y}=\frac{c}{z}\)
Ta có:
\(\frac{1}{a^3\left(b+c\right)}+\frac{1}{b^3\left(c+a\right)}+\frac{1}{c^3\left(a+b\right)} \)
= \(\frac{1}{a^2}.\frac{1}{ab+ac}+\frac{1}{b^2}.\frac{1}{bc+ac}+\frac{1}{c^2}.\frac{1}{ac+bc}\)
=\(\frac{\frac{1}{a^2}}{ab+ac}+\frac{\frac{1}{b^2}}{bc+ab}+\frac{\frac{1}{c^2}}{ac+bc}\)
Áp dụng BĐT (1) ta có:
\(\frac{\frac{1}{a^2}}{ab+ac}+\frac{\frac{1}{b^2}}{bc+ab}+\frac{\frac{1}{c^2}}{ac+bc}\ge\frac{\left(\frac{1}{a}+\frac{1}{b}++\frac{1}{c}\right)^2}{2\left(ab+bc+ac\right)}\)
Mà abc=1⇒\(\left\{{}\begin{matrix}ab=\frac{1}{c}\\bc=\frac{1}{a}\\ac=\frac{1}{b}\end{matrix}\right.\)
\(\frac{\frac{1}{a^2}}{ab+ac}+\frac{\frac{1}{b^2}}{bc+ac}+\frac{\frac{1}{c^2}}{ac+bc}\ge\frac{\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2}{2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)}\)
\(\frac{\frac{1}{a^2}}{ab+ac}+\frac{\frac{1}{b^2}}{bc+ac}+\frac{\frac{1}{c^2}}{ac+bc}\ge\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\sqrt[3]{\frac{1}{abc}}=3\sqrt[3]{\frac{1}{1}}=3\)( BĐT cosi )
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\)
\(\frac{\frac{1}{a^2}}{ab+ac}+\frac{\frac{1}{b^2}}{bc+ac}+\frac{\frac{1}{c^2}}{ac+bc}\ge\frac{1}{2}.3=\frac{3}{2}\)
Vậy \(\frac{1}{a^3\left(b+c\right)}+\frac{1}{b^3\left(c+a\right)}+\frac{1}{c^3\left(a+b\right)}\ge\frac{3}{2}\)
Chúc bạn học tốt !!!
hihihihihihihihi

17 tháng 3 2019

Ta có: abc = 1, thế vào ta được:

\(\frac{abc}{a^3\left(b+c\right)}+\frac{abc}{b^3\left(c+a\right)}+\frac{abc}{c^3\left(a+b\right)}\)

\(=\frac{bc}{a^2\left(b+c\right)}+\frac{ca}{b^2\left(c+a\right)}+\frac{ab}{c^2\left(a+b\right)}\)

\(=\frac{b^2c^2}{a^2bc\left(b+c\right)}+\frac{c^2a^2}{b^2ac\left(c+a\right)}+\frac{a^2b^2}{c^2ab\left(a+b\right)}\)

Áp dụng BĐT Cauchy - Schwarz dạng Engel, ta có:

\(VT\ge\frac{\left(bc+ca+ac\right)^2}{abc\left(2ab+2bc+2ca\right)}=\frac{\left(bc+ca+ac\right)^2}{2\left(ab+bc+ca\right)}=\frac{ab+bc+ca}{2}\ge\frac{\sqrt[3]{a^2b^2c^2}}{2}=\frac{3}{2}\)

\("="\Leftrightarrow a=b=c=1\)

22 tháng 12 2019

BĐT Cauchy-Schwarz dạng Engel là gì vậy bn?

Nhờ bn giải thích dùmhaha

NV
4 tháng 6 2020

Đặt \(\left(a;b;c\right)=\left(\frac{1}{x};\frac{1}{y};\frac{1}{z}\right)\Rightarrow xyz=1\)

Đặt vế trái là P

Ta có: \(P=\frac{x^3yz}{y+z}+\frac{y^3zx}{z+x}+\frac{xyz^3}{x+y}=\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\)

\(P\ge\frac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\frac{x+y+z}{2}\ge\frac{3\sqrt[3]{xyz}}{2}=\frac{3}{2}\)

Dấu "=" xảy ra khi \(x=y=z=1\) hay \(a=b=c=1\)

\(\lceil\) Chuyên đề \(\rfloor\): Bất đẳng thức hàng tuần. (Post 2) 1/ Cho a, b, c là các số thực không âm thỏa mãn ab + bc + ca = 3. Chứng minh: \(a^2+b^2+c^2+3abc\ge6\) 2/ Cho a, b, c là các số thực không âm thỏa mãn a + b + c = 3. Chứng minh rằng: \(\frac{a^2}{3a+b^2}+\frac{b^2}{3b+c^2}+\frac{c^2}{3c+a^2}\ge\frac{3}{4}\) 3/ Cho a, b, c là 3 cạnh của tam giác. Chứng minh...
Đọc tiếp

\(\lceil\) Chuyên đề \(\rfloor\): Bất đẳng thức hàng tuần. (Post 2)

1/ Cho a, b, c là các số thực không âm thỏa mãn ab + bc + ca = 3. Chứng minh:

\(a^2+b^2+c^2+3abc\ge6\)

2/ Cho a, b, c là các số thực không âm thỏa mãn a + b + c = 3. Chứng minh rằng:

\(\frac{a^2}{3a+b^2}+\frac{b^2}{3b+c^2}+\frac{c^2}{3c+a^2}\ge\frac{3}{4}\)

3/ Cho a, b, c là 3 cạnh của tam giác. Chứng minh rằng:

\(\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{8}\ge\frac{\left(2a+b\right)\left(2b+c\right)\left(2c+a\right)}{27}\)

4/ Cho a, b, c là các số thực dương. Chứng minh rằng:

\(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}+1\ge\sqrt{\frac{11\left(a^2+b^2+c^2\right)}{ab+bc+ca}+5}\)

5/ Cho a, b, c là số thực dương. Chứng minh:

\(\frac{a+b+c}{9\sqrt[3]{abc}}\ge\frac{a^2}{4a^2+5bc}+\frac{b^2}{4b^2+5ca}+\frac{c^2}{4c^2+5ab}\)

Xem TOPIC (Post 1) tại:Câu hỏi của tth - Toán lớp 8 | Học trực tuyến (vẫn nhận bài đến hết thứ 7 tuần này, ngày 25/4.)

TOPIC này thời gian nộp bài tương tự như trước (1 tuần, đến hết thứ Năm tuần sau, ngày 30/4)

Riêng bài \(5\) mong mọi người tìm những cách hay chứ đừng như cách em, nhìn là hết muốn đọc rồi :))

9
23 tháng 4 2020

Bài 1 : \(VT=a^2+b^2+c^2+3abc=\frac{\left(a+b+c\right)\left(a^2+b^2+c^2\right)+3abc\left(a+b+c\right)}{a+b+c}\ge\frac{\left(a+b+c\right)\left(a^2+b^2+c^2\right)+9abc}{a+b+c}\)

\(=\frac{a^3+b^3+c^3+3abc+ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)+6abc}{a+b+c}\)

\(\ge\frac{2ab\left(a+b\right)+2bc\left(b+c\right)+2ca\left(c+a\right)+6abc}{a+b+c}\)

\(=\frac{2\left(ab+bc+ca\right)\left(a+b+c\right)}{a+b+c}=6\)

Có sai sót gì xin cmt bên dưới ạ

23 tháng 4 2020

Nguyễn Thị Ngọc Thơ đúng vậy, lời giải của em:

\(VT-VP\ge\frac{\left(a+b\right)^2}{2}+c^3-\frac{\left(541-37\sqrt{37}\right)}{108}\)

\(={\frac { \left( 6\,c+1+2\,\sqrt {37} \right) \left( -6\,c-1+\sqrt {37 } \right) ^{2}}{216}} \geqq 0\)

Done.

NV
13 tháng 3 2020

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}=\frac{9}{6}=\frac{3}{2}\)

Dấu "=" xảy ra khi \(a=b=c=2\)

\(\frac{a^2}{b}+b\ge2\sqrt{\frac{a^2b}{b}}=2a\) ; \(\frac{b^2}{c}+c\ge2b\) ; \(\frac{c^2}{a}+a\ge2a\)

Cộng vế với vế:

\(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}+a+b+c\ge2\left(a+b+c\right)\)

\(\Rightarrow\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\ge a+b+c=6\)

Dấu "=" xảy ra khi \(a=b=c=2\)

NV
21 tháng 10 2019

\(P\left(x\right)=48x^3-24x^2+3x+16x^2-8x+1\)

\(=3x\left(16x^2-8x+1\right)+16x^2-8x+1\)

\(=\left(3x+1\right)\left(16x^2-8x+1\right)\)

\(=\left(3x+1\right)\left(4x-1\right)^2\)

b/ \(\Leftrightarrow48x^3-8x^2\ge5x-1\)

\(\Leftrightarrow48x^3-8x^2-5x+1\ge0\)

\(\Leftrightarrow\left(3x+1\right)\left(4x-1\right)^2\ge0\) (luôn đúng \(\forall x\ge0\))

Dấu "=" xảy ra khi \(x=\frac{1}{4}\)

c/ Bạn chắc là ghi đề sai

21 tháng 10 2019

\(6\left(a^3+b^3+c^3+d^3\right)-\left(a^2+b^2+c^2+d^2\right)\) mình ghi lại đề câu c rồi , sorry bạn nha