K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 2 2020

bc=ab/2a-b

cho tam giác nhọn ABC. Đường tròn tâm O đường kính BC cắt các cạnh AB,AC lần lượt tại các điểm M,N . Gọi H là gia điểm BN, CM; P là giao điểm AH và BC1. Chứng minh tứ giác AMHN nội tiếp đường tròn2. Chứng minh BM.BA=BP.BC3. Trong trường hợp đặc biệt khi tam giác ABC đều cạnh bằng 2a. Tính chu vi đường tròn ngoại tiếp tứ giác AMHN theo a4. Từ A kẻ các tiếp tuyển AE và AF của đường tròn tâm...
Đọc tiếp

cho tam giác nhọn ABC. Đường tròn tâm O đường kính BC cắt các cạnh AB,AC lần lượt tại các điểm M,N . Gọi H là gia điểm BN, CM; P là giao điểm AH và BC
1. Chứng minh tứ giác AMHN nội tiếp đường tròn
2. Chứng minh BM.BA=BP.BC
3. Trong trường hợp đặc biệt khi tam giác ABC đều cạnh bằng 2a. Tính chu vi đường tròn ngoại tiếp tứ giác AMHN theo a
4. Từ A kẻ các tiếp tuyển AE và AF của đường tròn tâm O đường kính BC ( E,F là các tiếp điểm). Chứng minh ba điểm E,H,F thằng hàng

 

Cho tam giác ABC có 3 góc nhọn nội tiếp đường tròn C tâm O bán kính R. Hai đường cao AE và BK của tam giác ABC cắt nhau tại H ( với E thuộc BC, K thuộc AC)
1. Chứng minh tg AEBK nội tiếp đường tròn
2. Chứng minh CE.CB=CK.CA
3. Chứng minh góc OCA = góc BAE

2
2 tháng 4 2020

  • LUYỆN TẬP
  • HỎI ĐÁP
  • KIỂM TRA

TRỢ GIÚP

  •  
  •  
  • 1
  • khoilaba 

Giúp tôi giải toán và làm văn

 Tìm kiếm 

  • Mới nhất
  • Chưa trả lời
  • Câu hỏi hay
  • Câu hỏi tôi quan tâm
  • Câu hỏi của bạn bè
  • Gửi câu hỏi

Tất cảToánTiếng ViệtTiếng Anh

KHANH QUYNH MAI PHAM

Trả lời

0

Đánh dấu

Hôm kia lúc 10:03

Cho phương trình

x2−2mx+2m−1=0

Tìm m để phương trình đã cho có 2 nghiệm phân biệt x1, x2 thỏa mãn lx1-x2l=16

Toán lớp 9

Tiểu Duy Hồ Bạch

Trả lời

0

Đánh dấu

31 tháng 3 2019 lúc 9:56

cho tam giác nhọn ABC. Đường tròn tâm O đường kính BC cắt các cạnh AB,AC lần lượt tại các điểm M,N . Gọi H là gia điểm BN, CM; P là giao điểm AH và BC
1. Chứng minh tứ giác AMHN nội tiếp đường tròn
2. Chứng minh BM.BA=BP.BC
3. Trong trường hợp đặc biệt khi tam giác ABC đều cạnh bằng 2a. Tính chu vi đường tròn ngoại tiếp tứ giác AMHN theo a
4. Từ A kẻ các tiếp tuyển AE và AF của đường tròn tâm O đường kính BC ( E,F là các tiếp điểm). Chứng minh ba điểm E,H,F thằng hàng

Cho tam giác ABC có 3 góc nhọn nội tiếp đường tròn C tâm O bán kính R. Hai đường cao AE và BK của tam giác ABC cắt nhau tại H ( với E thuộc BC, K thuộc AC)
1. Chứng minh tg AEBK nội tiếp đường tròn
2. Chứng minh CE.CB=CK.CA
3. Chứng minh góc OCA = góc BAE

Đọc tiếp...

Được cập nhật Hôm kia lúc 12:35

Câu hỏi tương tự Đọc thêm Báo cáo

Toán lớp 8

Nguyen Thi Phung

Trả lời

0

Đánh dấu

26 tháng 5 2018 lúc 14:58

Cho nửa đường tròn đường kính AB và 1 điểm M bất kì trên nửa đường tròn đó ( M khác A , B ) . Trên nửa mặt phẳng bờ AB chứa nửa đường tròn người ta vẽ tiếp tuyến Ax . Tia BM cắt tia Ax tại I ; tia phân giác của ^IAMcắt nửa đường tròn tại E , cắt tia BM tại F . Tia BE cắt Ax tại H , cắt AM tại K .

a) Chứng minh rằng :

IA2=IM.IB

b) Chứng minh :  Tam giác BAF cân .

c) Chứng minh : tứ giác AKFH là hình thoi 

d) Xác định vị trí M để tứ giác AKFI nội tiếp  được đường tròn .

Đọc tiếp...

Được cập nhật Hôm kia lúc 12:22

Toán lớp 9

Khanhthien Lê

Trả lời

0

Đánh dấu

31 tháng 3 lúc 8:44

Cho đường tròn (O;R) và một điểm A sao cho OA = R . Vẽ các tiếp tuyến AB, AC với đường tròn (A, B là các tiếp điểm). Vẽ góc xOy bằng 450 cắt đoạn thẳng AB và AC lần lượt tại D và E. Chứng minh rằng:

Được cập nhật Hôm kia lúc 11:45

Toán lớp 9

Nguyễn Phương Thảo

Trả lời

0

Đánh dấu

Hôm kia lúc 11:41

BÀI 1:
Trả lời câu 3 (trang 43 sgk Ngữ Văn 6 Tập 2):
Dựa vào bài Vượt thác, hãy viết một đoạn văn từ ba đến năm câu tả dượng
Hương Thư đưa thuyền vượt qua thác dữ; trong đoạn văn có sử dụng cả hai
kiểu so sánh đã được giới thiệu.
GỢI Ý: Hướng dẫn viết đoạn văn:
-  Hình thức: Từ 3- 5 câu diễn đạt mạch lạc.
-  Nội dung: tả cảnh dượng Hương Thư đưa thuyền vượt qua thác dữ.
-  Kĩ năng: Sử dụng hai kiểu so sánh ngang bằng và so sánh không ngang bằng.
Đoạn văn tham khảo 1
Nước từ trên cao phóng xuống định nuốt chửng con thuyền. Nhưng ở phía dưới
dượng Hương Thư nhanh như cắt vừa thả sào, vừa rút sào nhịp nhàng, đều đặn.
Con thuyền được giữ thăng bằng xé ngang dòng nước lao nhanh. Nó chồm lên, sấn
tới, hùng dũng hơn cả dòng thác dữ.
Đoạn văn tham khảo 2: Cảnh Dượng Hương Thư vượt thác được coi là một
trong những đoạn đặc sắc nhất mà tác giả Võ Quảng viết về hành trình người lao
động chinh phục khó khăn, thử thách. Nước từ trên cao đổ xuống hung hãn như
muốn nuốt con thuyền. Dượng Hương Thư bình tĩnh ghì chặt đầu sào, chuyển
hướng thuyền lao nhanh về phía trước. Nhìn dượng lúc đó oai hùng hơn một dũng
sĩ rừng xanh.
ĐOẠN VĂN CỦA HS:

BÀI 2: Chỉ ra và phân tích hiệu quả của biện pháp tu từ so sánh trong đoạn thơ sau:

Những ngôi sao thức ngoài kia
Chẳng bằng mẹ đã thức vì chúng con
Đêm nay con ngủ giấc tròn
Mẹ là ngọn gió của con suốt đời

( Trần Quốc Minh- Mẹ)

GỢI Ý:
+ Nhớ lại các bước làm 1 bài tập tu từ ( 3 bước)
- Gọi tên BPTT

Đọc tiếp...

Ngữ Văn lớp 6

Nguyễn Tiến Quang Vinh

Trả lời

0

Đánh dấu

Hôm kia lúc 9:47

Tìm số tự nhiên m và n sao cho 6^m+2^n+2 là số chính phương

Toán lớp 8

Nguyễn Thanh Hà

Trả lời

0

Đánh dấu

31 tháng 3 lúc 8:12

Cho hệ phương trình :  {

(m−1)x−my=3m−1
2x−y=m+5

a) Gỉai và biện luận hệ phương trình theo m

b) Với giá trị nguyên nào của m để hai đường thẳng của hệ cắt nhau tại 1 điểm nằm trong góc phần tư thứ IV của hệ tọa độ Oxy

GIÚP MÌNH VỚI Ạ !THANKS NHIỀU !!

Đọc tiếp...

Được cập nhật Hôm kia lúc 11:35

Toán lớp 9

Nguyễn Trần Lâm

Trả lời

0

Đánh dấu

30 tháng 3 lúc 14:06

Cho biểu thức 4x^{2}+3x+44x2+3x+4.

Giá trị biểu thức

1) tại x = 3x=3 là  

.

2) tại x = 0x=0 là 

.

3) tại x = -3x=−3 là 

.

Đọc tiếp...

Được cập nhật 30 tháng 3 lúc 18:29

Toán lớp 7

Hoàng Bin

Trả lời

0

Đánh dấu

Hôm kia lúc 12:09

1.Thực hiện phép chia

a,(163-642):82

b,(5x4-3x3+x2):3x2

c,(5xy2+9xy-x2y2):(-xy)

2.Tìm số tự nhiên n để mỗi phép chia sau là phép chia hết

a,(5x3-7x2+x5):3xn

b,(13x4y3-5x3y3+6x2y):5xnyn

3.Tìm a,b để đa thức 2x3+ax+b chia cho x+1 dư -6 và chia cho x-2 dư 21 (Dùng định lý Bơ Du)

Bạn nào biết thì làm nhanh giùm mình với nhé !

Đọc tiếp...

Toán lớp

juni

Trả lời

0

Đánh dấu

Hôm kia lúc 12:50

Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn (C) tâm O bán kính R. Hai đường cao AE và BK của tam giác ABC cắt nhau tại H ( với E thuộc BC, K thuộc AC).

1. Chứng minh tứ giác ABEK nội tiếp được trong một đường tròn

2. Chứng minh CE.CB = CK.CA

3.Chứng minh góc OCA = góc BAE

4. Cho B,C cố định và A di động trên (C) nhưng vẫn thoả mãn điều kiện tam giác ABC nhọn; khi đó H thuộc 1 đường tròn (T) cố định. Xác định tâm I và tính bán kính r của đường tròn (T), biết R=3cm.

Đọc tiếp...

Toán lớp

tramy

Trả lời

0

Đánh dấu

Hôm kia lúc 12:58

Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn (C) tâm O bán kính R. Hai đường cao AE và BK của tam giác ABC cắt nhau tại H ( với E thuộc BC, K thuộc AC.

1. Chứng minh tứ giác ABEK nội tiếp được đường tròn.

2. Chứng minh CE.CB=CK.CA

3. Chứng minh góc OCA = góc BAE

4. Cho B,C cố định và A di động trên (C) nhưng vẫn thỏa mãn điều kiện tam giác ABC nhọn; khi đó H thuộc 1 đường tròn (T) cố định. Xác định tâm I và tính bán kính r của đường tròn (T), biết R= 3cm

giúp mình với ạ, mình cần gấp

Đọc tiếp...

Toán lớp

Hoàng Lâm Tùng tew

Trả lời

0

Đánh dấu

Hôm kia lúc 16:41

Từ điểm M nằm ngoài đường tròn (O;R), vẽ tiếp tuyến MA và cát tuyến MBC ( B nằm giữa M và C )

a) CM: MA.MA=MB.MC

b) Gọi BD, CE lần lượt là hai đường cao của tam giác ABC. CM: ED song song MA

c) Tia DE cắt MC tại F.FA cắt đường tròn (O) tại G. CM: GEA=GFB

Đọc tiếp.....

13 tháng 4 2022

cái gì vậy?

Câu 1: Cho hình bình hành ABCD có đường chéo AC>DB. Vẽ CE vuông góc đường thẳng AB tại E, vẽ CF vuông góc đường thẳng AD tại F. Chứng minh a) Tam giác ABH đồng dạng tam giác ACE b) Tam giác BHC đồng dạng tam giác CFA c) Tổng AB.AE+AD.AF không đổi Câu 2: Cho tam giác ABC vuông tại A, đường cao AH(H thuộc BC) và phân giác BE của ABC(E thuộc AC) cắt nhau tại I. Chứng minh: a) IH.AB=IA.BH b) BHA đồng dạng BAC...
Đọc tiếp

Câu 1: Cho hình bình hành ABCD có đường chéo AC>DB. Vẽ CE vuông góc đường thẳng AB tại E, vẽ CF vuông góc đường thẳng AD tại F. Chứng minh 
a) Tam giác ABH đồng dạng tam giác ACE 
b) Tam giác BHC đồng dạng tam giác CFA 
c) Tổng AB.AE+AD.AF không đổi 
Câu 2: Cho tam giác ABC vuông tại A, đường cao AH(H thuộc BC) và phân giác BE của ABC(E thuộc AC) cắt nhau tại I. Chứng minh: 
a) IH.AB=IA.BH 
b) BHA đồng dạng BAC => AB^2=BH.BC 
c) IH/IA = AE/EC 
d) AIE cân 
Câu 3: Cho góc nhọn xOy, lần lượt lấy trên Ox các điểm A,B sao cho OA= 3 cm, OB=10cm. Trên Oy lấy lần lượt các điểm C,D sao cho OC=5cm, OD=6cm. Hai đoạn thẳngAD và BC cắt nhau tại I: 
a) AOD đồng dạng COB 
b) AIB đồng dạng CID 
c) IA.ID=IC.IB 
d) Cho diện tích ICD= 3 cm^2. Hãy tính diện tích của IAB?

0
1, Cho tam giác ABC vuông tại A, đường cao AH. Gọi I là trung điểm của AH, đường vuông góc với BC tại C cắt đường thẳng BI tại D. chứng minh AD=DC?2,Cho tứ giác ABCD, O là giao điểm của 2 đường chéo. Từ một điểm I bất kì trên đường chéo BD ta vẽ đường thẳng song song với đường chéo AC, đường thẳng này cắt các cạnh AB,BC tại P, Q và cắt các tia DA, DC tại S, R.chứng minh:a, =B, =*c, =3,...
Đọc tiếp

1, Cho tam giác ABC vuông tại A, đường cao AH. Gọi I là trung điểm của AH, đường vuông góc với BC tại C cắt đường thẳng BI tại D. chứng minh AD=DC?
2,Cho tứ giác ABCD, O là giao điểm của 2 đường chéo. Từ một điểm I bất kì trên đường chéo BD ta vẽ đường thẳng song song với đường chéo AC, đường thẳng này cắt các cạnh AB,BC tại P, Q và cắt các tia DA, DC tại S, R.chứng minh:
a, =
B, =*
c, =
3, cho hình thang ABCD (AB//CD) có M là giao điểm của AD và BC, N là giao điểm hai đường chéo. Gọi I, K theo thứ tự là giao điểm của MN với AB, CD. Chứng minh I là trung điểm của AB, K là trung điểm của CD
4, cho tam giác ABC có AB<AC, đường phân giác AD, đường trung tuyến AM. Trên cạnh AC lấy điểm E sao cho AE=AB. gọi O, G theo thứ tự là giao điểm của BE với AD, AM.
a, chứng minh DG//AB
b, gọi I là giao điểm của MO với DG. chứng minh DG=IG
5, cho tam giác ABC có AB=5 cm, AC=7 cm, đường trung tuyến AM. lấy điểm E thuộc cạnh AB, điểm F thuộc cạnh AC sao cho AE=AF= 3 cm. gọi I là giao điểm của EF và AM .chứng minh I là trung điểm của AM

2
28 tháng 2 2016

giúp mình với nha 

Câu 3:

Xét ΔMDC có AB//CD

nên MA/MD=MB/MC(1)

Xét ΔMDK có AI//DK

nên AI/DK=MA/MD(2)

Xét ΔMKC có IB//KC

nên IB/KC=MB/MC(3)

Từ (1), (2) và (3) suy ra AI/DK=IB/KC=MI/MK

Vì AI//KC nên AI/KC=NI/NK=NA/NC

Vì IB//DK nên IB/DK=NI/NK

=>AI/KC=IB/DK

mà AI/DK=IB/KC

nên \(\dfrac{AI}{KC}\cdot\dfrac{AI}{DK}=\dfrac{IB}{DK}\cdot\dfrac{IB}{DC}\)

=>AI=IB

=>I là trung điểm của AB

AI/DK=BI/KC

mà AI=BI

nên DK=KC

hay K là trung điểm của CD

9 tháng 4 2021

Giúp mình với mọi người 😭😭

a) Xét ΔABC vuông tại A và ΔHBA vuông tại H có

\(\widehat{ABC}\) chung

Do đó: ΔABC∼ΔHBA(g-g)

Bài 1: Cho tứ giác ABCD có BC = AD và BC không song song với AD, gọi M, N,P, Q, E, F lần lượt là trung điểm của các đoạn thẳng AB, BC, CD, DA, AC, BD.a) Chứng minh tứ giác MEPF là hình thoi.b) Chứng minh các đoạn thẳng MP, NQ, EF cùng cắt nhau tại một điểm.c) Tìm thêm điều kiện của tứ giác ABCD để N, E, F, Q thẳng hàngBài 2: Cho tam giác ABC vuông tại A (AB&lt;AC), M là trung điểm BC, từ M kẻđường thẳng...
Đọc tiếp

Bài 1: Cho tứ giác ABCD có BC = AD và BC không song song với AD, gọi M, N,
P, Q, E, F lần lượt là trung điểm của các đoạn thẳng AB, BC, CD, DA, AC, BD.
a) Chứng minh tứ giác MEPF là hình thoi.
b) Chứng minh các đoạn thẳng MP, NQ, EF cùng cắt nhau tại một điểm.
c) Tìm thêm điều kiện của tứ giác ABCD để N, E, F, Q thẳng hàng
Bài 2: Cho tam giác ABC vuông tại A (AB&lt;AC), M là trung điểm BC, từ M kẻ
đường thẳng song song với AC, AB lần lượt cắt AB tạt E, cắt AC tại F
a) Chứng minh EFCB là hình thang
b) Chứng minh AEMF là hình chữ nhật
c) Gọi O là trung điểm AM. Chứng minh: E và F đối xứng qua O.
d) Gọi D là trung điểm MC. Chứng minh: OMDF là hình thoi
Bài 3: Cho tam giác ABC có AB&lt;AC. Gọi M, N, P lần lượt là trung điểm của AB,
AC, BC. Vẽ đường cao AH của tam giác ABC. Tứ giác HMNP là hình gì.
Bài 4: Cho tứ giác ABCD có góc DAB = góc BCD = 120 0 . Tính số đo của hai góc
còn lại để ABCD là hình bình hành.
Bài 5: Cho hình bình hành ABCD. Trên đưởng chéo AC chọn hai điểm E và F sao
cho AE=EF=FC.
a) Tứ giác BEDF là hình gì?
b) Chứng minh CFDAEB .
c) Chứng minh CFBEAD .
Bài 6: Cho tam giác ABC cân tại A, đường cao AD. Gọi E là điểm đối xứng với D qua
trung điểm M của AC.
a) Tứ giác ADCE là hình gì? Vì sao?
b) Tứ giác ABDM là hình gì? Vì sao?
c) Tam giác ABC có thêm điều kiện gì thì ADCE là hình vuông?
d) Tam giác ABC có thêm điều kiện gì thì ABDM là hình thang cân?

5
2 tháng 3 2020

Bài 1:

A B C D M N P Q E F

a) Xét tam giác ABC có M là trung điểm của AB (gt) ,E là trung điểm của AC (gt)

\(\Rightarrow ME\)là đường trung bình tam giác ABC

\(\Rightarrow ME=\frac{1}{2}BC\left(tc\right)\left(1\right)\)

Xét tam giác ADC có E là trung điểm của AC (gt) ,P là trung điểm của DC (gt)

\(\Rightarrow PE\)là đường trung bình của tam giác ADC

\(\Rightarrow PE=\frac{1}{2}AD\left(tc\right)\left(2\right)\)

mà \(AD=BC\left(gt\right)\left(3\right)\)

Từ (1) , (2) và (3) \(\Rightarrow EM=PE\)

CMTT: \(PE=FP,FM=ME\)

\(\Rightarrow ME=EP=PF=FM\)

Xét tứ giác MEPF có:

\(ME=EP=PF=FM\left(cmt\right)\)

\(\Rightarrow MEPF\)là hình thoi ( dhnb)

 b) Vì \(MEPF\)là hình thoi (cmt)

\(\Rightarrow FE\)giao với MP tại trung điểm mỗi đường (tc)  (4)

Xét tam giác ADB có M là trung điểm của AB(gt) ,Q là trung điểm của AD (gt)

\(\Rightarrow MQ\)là đường trung bình của tam giác ADB

\(\Rightarrow MQ//DB,MQ=\frac{1}{2}DB\left(tc\right)\left(5\right)\)

Xét tam giác BDC có N là trung điểm của BC(gt) , P là trung điểm của DC(gt)

\(\Rightarrow NP\)là đường trung bình của tam giác BDC

\(\Rightarrow NP//DB,NP=\frac{1}{2}DB\left(tc\right)\left(6\right)\)

Từ (5) và (6) \(\Rightarrow MQ//PN,MQ=PN\)

Xét tứ giác MQPN có \(\Rightarrow MQ//PN,MQ=PN\)

\(\Rightarrow MQPN\)là hình bình hành (dhnb)

\(\Rightarrow MP\)giao QN tại trung điểm mỗi đường (tc) (7)

Từ (4) và (7) \(\Rightarrow MP,NQ,EF\)cắt nhau tại một điểm 

c) Xét tam giác ABD có Q là trung điểm của AD (gt), F là trung điểm của BD(gt)

\(\Rightarrow QF\)là đường trung bình của tam giác ADB

\(\Rightarrow QF//AB\left(8\right)\)

CMTT: \(FN//CD\)và \(EN//AB\)

Mà Q,F,E,N thẳng hàng 

\(\Rightarrow AB//CD\)

Vậy để Q,F,E,N thẳng hàng thì tứ giác ABCD phải thêm điều kiện  \(AB//CD\)


 

2 tháng 3 2020

Tối về mình làm nốt  nhé giờ mình có việc 

11 tháng 3 2020

Giả sử M nằm giữa B and D 

a) 
tam giác IED có:

\(\hept{\begin{cases}IE=ID=\frac{1}{2}AM\\\widehat{EID}=2.\widehat{BAD}=60^0\end{cases}}\)

=> TAM GIÁC IED là tam giác đều (1)
Chứng minh tương tự ta được tam giác IFD là tam giác đều (2).

Từ (1) và (2) suy ra DEIF là hình thoi.

b) Vì
tam giác ABC đều nên trực tâm H củng là trọng tâm. Suy ra:
AH = 2.HD
Gọi P là trung điểm của AH
=> AP = PH = HD. Suy ra IP, KH thứ tự là đường trung bình của các tam giác AMH và DIP

=> MH // IP và KH // IP, 

=> M , K , H thẳng hàng 

c)

Vì tam giac  EDK vuông tại K nên ta có: EF =2.EK = 2. ED.sinKDE =\(\sqrt{3}\).DE do đó EF đạt GTNN

=>DE đạt GTNN => \(DE\perp AB=>M\)trùng zs  D ( Có thể dùng đ.lý pitago để tính EF theo DE ).

d) ta có diện tích DEIF=\(\frac{1}{2}DI.EF\)theo DE

e)e) Tìm quỹ tích của K thông qua quỹ tích của I.

bài này dài lắm . nên gợi ý như thế thôi . cần hỏi chỗ nào ib riêng cho mình ^^