\(\left(O;R\right)\) đường kính AB.Điểm C thuộc (O).Vẽ \(...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 6 2018

Bạn còn cần giúp k ... có thì li-ke đi mk giúp

22 tháng 5 2017

Bài 2:a)\(\dfrac{1}{a}+\dfrac{1}{b}-\dfrac{4}{a+b}=ab+b^2+a^2+ab-4ab=a^2-2ab+b^2=\left(a-b\right)^2\ge0\)

=>\(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\)

Dấu = xảy ra khi (a-b)2=0<=>a=b

b)Áp dụng BĐT ở câu a:\(\dfrac{1}{b^2}+\dfrac{1}{c^2}\ge\dfrac{4}{b^2+c^2}\)

Dấu = xảy ra khi b2=c2

Áp dụng cosi \(\dfrac{b^2+c^2}{a^2}+\dfrac{a^2}{b^2+c^2}\ge2\)

Dấu = xảy ra khi b2+c2=a2

\(a^2\ge b^2+c^2\Rightarrow\dfrac{a^2}{b^2+c^2}\ge1\)

Giờ ta phân tích P:\(P=\dfrac{1}{a^2}\left(b^2+c^2\right)+a^2\left(\dfrac{1}{b^2}+\dfrac{1}{c^2}\right)\ge\dfrac{b^2+c^2}{a^2}+a^2\cdot\dfrac{4}{b^2+c^2}=\dfrac{b^2+c^2}{a^2}+\dfrac{a^2}{b^2+c^2}+\dfrac{3a^2}{b^2+c^2}\ge2+3=2+3=5\)

=>min P=5 đạt được khi \(\left\{{}\begin{matrix}b^2=c^2\\a^2=b^2+c^2\end{matrix}\right.\)<=>a2=2b2=2c2

24 tháng 5 2017

còn bài 1 thì sao bn

5 tháng 1 2018

Vẽ hình giúp mình luôn nha cảm ơn nhiều

10 tháng 12 2023

a: Xét (O) có

AB,AC là các tiếp tuyến

Do đó: AB=AC

=>A nằm trên đường trung trực của BC(1)

Ta có: OB=OC

=>O nằm trên đường trung trực của BC(2)

Từ (1) và (2) suy ra OA là đường trung trực của BC

=>OA\(\perp\)BC tại H và H là trung điểm của BC

Xét (O) có

ΔBCD nội tiếp

BD là đường kính

Do đó: ΔBCD vuông tại C

=>BC\(\perp\)CD tại C

Ta có: BC\(\perp\)CD

OA\(\perp\)BC

Do đó: OA//CD

b: Xét (O) có

ΔBED nội tiếp

BD là đường kính

Do đó: ΔBED vuông tại E

=>BE\(\perp\)ED tại E

=>BE\(\perp\)AD tại E

Xét ΔDBA vuông tại B có BE là đường cao

nên \(AE\cdot AD=AB^2\left(3\right)\)

Xét ΔABO vuông tại B có BH là đường cao

nên \(AH\cdot AO=AB^2\left(4\right)\)

Từ (3) và (4) suy ra \(AE\cdot AD=AH\cdot AO\)

=>\(\dfrac{AE}{AO}=\dfrac{AH}{AD}\)

Xét ΔAEH và ΔAOD có

\(\dfrac{AE}{AO}=\dfrac{AH}{AD}\)

\(\widehat{EAH}\) chung

Do đó: ΔAEH đồng dạng với ΔAOD

=>\(\widehat{AHE}=\widehat{ADO}\)

c: Xét ΔOBA vuông tại B có \(sinBAO=\dfrac{OB}{OA}=\dfrac{1}{2}\)

nên \(\widehat{BAO}=30^0\)

Xét (O) có

AB,AC là các tiếp tuyến

Do đó: AO là phân giác của góc BAC

=>\(\widehat{BAC}=2\cdot\widehat{BAO}=60^0\)

Xét ΔOBA vuông tại B có \(BO^2+BA^2=OA^2\)

=>\(BA^2+2^2=4^2\)

=>\(BA^2=12\)

=>\(BA=2\sqrt{3}\left(cm\right)\)

Xét ΔBAC có AB=AC và \(\widehat{BAC}=60^0\)

nên ΔBAC đều

=>\(S_{ABC}=\left(2\sqrt{3}\right)^2\cdot\dfrac{\sqrt{3}}{4}=12\cdot\dfrac{\sqrt{3}}{4}=3\sqrt{3}\left(cm^2\right)\)