\(y=f\left(x\right)=5x^2+1\)

chứng tỏ rằng f(-a) = f(a) với mọi 

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 12 2018

Ta có : \(f\left(a\right)=5\cdot a^2+1\)

và \(f\left(-a\right)=5\cdot\left(-a\right)^2+1\)

Dễ thấy \(5\cdot a^2=5\cdot\left(-a\right)^2\)

Do đó : \(5\cdot a^2+1=5\cdot\left(-a\right)^2+1\left(đpcm\right)\)

f(-a)=5(-a)2+1=5a+1

f(a)=5a+1

Vậy f(-a)=f(a)

17 tháng 11 2016

a) \(f\left(3\right)=4\times3^2-5=31\)

\(f\left(-\frac{1}{2}\right)=4\times\left(-\frac{1}{2}\right)^2-5=-4\)

b) để f(x)=-1

<=>\(4x^2-5=-1\)

<=>\(4x^2=4\)

<=>\(x^2=1\)

<=>\(x=\orbr{\begin{cases}1\\-1\end{cases}}\)

24 tháng 3 2020

Cho hàm số y = f(x) = 4x^2 +4y=f(x)=4x2+4. Tính f(-2)f(−2) ; f(2)f(2) ; f(4)f(4).

Đáp số:

f(-2) =f(−2)=  

f(2) =f(2)=  

f(4) =f(4)=  

4 tháng 12 2016

\(a.\)

Theo đề , ta có : \(y=f\left(x\right)=4x^2-5\)

\(\Rightarrow\)

\(f\left(3\right)=4.\left(3\right)^2-5=31\)

\(f\left(-\frac{1}{2}\right)=4.\left(-\frac{1}{2}\right)^2-5=-4\)

 

\(b.\)

Ta có : \(f\left(x\right)=-1\)

\(\Rightarrow4x^2-5=-1\)

\(\Rightarrow4x^2=-1+5=4\)

\(\Rightarrow x^2=4:4=1\)

\(\Rightarrow x=\sqrt{1}=1\)

\(c.\)

Ta có :

\(f\left(x\right)=4x^2-5\)

\(\Rightarrow f\left(x\right)=4.\left(x\right)^2-5\) \(\left(1\right)\)

\(f\left(-x\right)=4.\left(-x\right)^2-5=4.\left(x\right)^2-5\) \(\left(2\right)\)

Từ \(\left(1\right)\)\(\left(2\right)\Rightarrow f\left(x\right)=f\left(-x\right)\)

9 tháng 3 2020

a)Với x1 = x= 1

 \( \implies\) \(f\left(1\right)=f\left(1.1\right)\)

 \( \implies\) \(f\left(1\right)=f\left(1\right).f\left(1\right)\)

 \( \implies\)\(f\left(1\right).f\left(1\right)-f\left(1\right)=0\)

 \( \implies\) \(f\left(1\right).\left[f\left(1\right)-1\right]=0\)

\( \implies\) \(\orbr{\begin{cases}f\left(1\right)=0\\f\left(1\right)-1=0\end{cases}}\)

Mà \(f\left(x\right)\) khác \(0\) ( với mọi \(x\) \(\in\) \(R\) ; \(x\) khác \(0\) )

\( \implies\) \(f\left(1\right)\) khác \(0\)

\( \implies\) \(f\left(1\right)-1=0\)

\( \implies\) \(f\left(1\right)=1\)

b)Ta có : \(f\left(\frac{1}{x}\right).f\left(x\right)=f\left(\frac{1}{x}.x\right)\)

\( \implies\) \(f\left(\frac{1}{x}\right).f\left(x\right)=f\left(1\right)=1\)

 \( \implies\) \(f\left(\frac{1}{x}\right).f\left(x\right)=1\)

\( \implies\) \(f\left(\frac{1}{x}\right)=\frac{1}{f\left(x\right)}\)

\( \implies\) \(f\left(x^{-1}\right)=\left[f\left(x\right)\right]^{-1}\)

2 tháng 12 2018

\(f\left(-2\right)=a.\left(-2\right)^2+b.\left(-2\right)+c=4a-2b+c\)

\(f\left(3\right)=a.3^2+b.3+c=9a+3b+c\)

\(f\left(-2\right)+f\left(3\right)=13a+b+2c=0\)

\(\Rightarrow f\left(-2\right)=-f\left(3\right)\Rightarrow f\left(-2\right).f\left(3\right)\le0\)

7 tháng 1 2018

Do hàm số \(f\left(x\right)\) xác định với mọi \(x \in \mathbb{R}\) nên

\(f\left(2\right)+3\cdot f\left(\dfrac{1}{2}\right)=4\left(1\right)\\ f\left(\dfrac{1}{2}\right)+3\cdot f\left(2\right)=\dfrac{1}{4}\Leftrightarrow3\cdot f\left(\dfrac{1}{2}\right)+9\cdot f\left(2\right)=\dfrac{3}{4}\left(2\right)\\ \left(2\right)-\left(1\right)\\ \Leftrightarrow8f\left(2\right)=-\dfrac{13}{4}\\ \Leftrightarrow f\left(2\right)=-\dfrac{13}{32}\)

7 tháng 1 2018

Câu hỏi của Thanh Hằng Nguyễn - Toán lớp 7 - Học toán với OnlineMath

help me!

28 tháng 11 2017

\(f\left(-x\right)=3\left(-x\right)^2-1=3x^2-1=f\left(x\right)\).