\(\frac{x}{7}=\frac{y}{8}=\frac{z}{9}\).

Tính giá trị của 

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

đặt \(\frac{x}{7}=\frac{y}{8}=\frac{z}{9}=k\Rightarrow x=7k;y=8k;z=9k\)

=>A=\(\left(7k-8k\right)\left(8k-9k\right)-\left(\frac{7k-9k}{2}\right)^2=\left(-k\right)\left(-k\right)-\left(\frac{2k}{2}\right)^2\)

=k2-k2=0

7 tháng 7 2017

Đặt \(\frac{x}{7}=\frac{y}{8}=\frac{z}{9}=k\)

\(\Rightarrow\hept{\begin{cases}x=7k\\y=8k\\z=9k\end{cases}}\left(1\right)\)

Thay (1) vào: \(A=\left(7k-8k\right)\left(8k-9k\right)-\left(\frac{7k-9k}{2}\right)^2\)

\(=-k.\left(-k\right)-\left(-k\right)^2\)

\(=k^2-k^2=0\)

Vậy A =0 .

18 tháng 11 2018

\(\frac{6}{11}x=\frac{9}{2}y=\frac{18}{5}z\Rightarrow\frac{6x}{11.18}=\frac{9y}{2.18}=\frac{18z}{5.18}\)

\(\Rightarrow\frac{-x}{-33}=\frac{y}{4}=\frac{z}{5}=\frac{-x+y+z}{-33+4+5}=\frac{-120}{-24}=5\)

\(\Rightarrow x=165;y=20;z=25\)

24 tháng 7 2019

a) \(\frac{-2}{5}+\frac{5}{6}.x=\frac{-4}{15}\)

\(\frac{5}{6}.x=\frac{-4}{15}-\frac{-2}{5}\)

\(\frac{5}{6}.x=\frac{2}{15}\)

\(x=\frac{2}{15}:\frac{5}{6}\)

\(x=\frac{4}{25}\)

b) \(\left(x-\frac{1}{5}\right)\left(y+\frac{1}{2}\right)\left(z-3\right)=0\)

\(x-\frac{1}{5}=0\)

\(x=0+\frac{1}{5}\)

\(x=\frac{1}{5}\)

29 tháng 4 2017

Câu 1 :
 A = (2012+2) . [ ( 2012-2) : 3+1 ] : 2 = 2014 . 671 : 2 = 675697
 B = \(\frac{1}{2}\).  \(\frac{2}{3}\).  \(\frac{3}{4}\)+...+  \(\frac{2010}{2011}\).  \(\frac{2011}{2012}\)\(\frac{1.2.3.....2010.2011}{2.3.4.....2011.2012}\)=  \(\frac{1}{2012}\)
Câu 2 :
 a) \(2x.\left(3y-2\right)+\left(3y-2\right)=-55\)
=> \(\left(3y-2\right).\left(2x+1\right)=-55\)
=>  \(3y-2;2x+1\in\: UC\left(-55\right)\)
=>  \(3y-2;2x+1=\left\{1;-1;5;-5;11;-11;55;-55\right\}\)
- Vậy ta có bảng 

BẢNG TÌM x;y
\(2x+1\) 1-1 5-511-1155-55
\(x\) 0-1 2-35-627-28
\(3y-2\)-5555-1111-55-11
\(3y\)-5357-913-3713
\(y\)\(\frac{-53}{3}\)(loại)19(chọn)-3(chọn)\(\frac{13}{3}\)(loại)-1(chọn)\(\frac{7}{3}\)(loại)\(\frac{1}{3}\)(loại)1(chọn)


\(\Leftrightarrow\)Những cặp (x;y) tìm được là : 
(-1;19)  ;   (2;-3)   ;    (5;-1)    ;    (-28;1)
b) Ta đặt vế đó là A
Ta xét A :   \(\frac{1}{4^2}\)<  \(\frac{1}{2.4}\)
                  \(\frac{1}{6^2}\)<  \(\frac{1}{4.6}\)
                  \(\frac{1}{8^2}\)<  \(\frac{1}{6.8}\)
                          ...
                 \(\frac{1}{\left(2n\right)^2}\)<  \(\frac{1}{\left(2n-2\right).2n}\)

  \(\Leftrightarrow\)A < \(\frac{1}{2.4}\)+  \(\frac{1}{4.6}\)+...+  \(\frac{1}{\left(2n-2\right).2n}\)
  \(\Leftrightarrow\)A < \(\frac{1}{2}\). ( \(\frac{2}{2.4}\)+  \(\frac{2}{4.6}\)+...+  \(\frac{2}{\left(2n-2\right).2n}\))
  \(\Leftrightarrow\)A < \(\frac{1}{2}\). ( \(\frac{1}{2}\)-  \(\frac{1}{4}\)+  \(\frac{1}{4}\)-  \(\frac{1}{6}\)+...+  \(\frac{1}{2n-2}\)-  \(\frac{1}{2n}\))
  \(\Leftrightarrow\)A < \(\frac{1}{2}\). ( \(\frac{1}{2}\)-  \(\frac{1}{2n}\)) = \(\frac{1}{2}\).  \(\frac{1}{2}\)-  \(\frac{1}{2}\).  \(\frac{1}{2n}\)
  \(\Leftrightarrow\)A < \(\frac{1}{4}\)-  \(\frac{1}{4n}\)<  \(\frac{1}{4}\) ( Vì n \(\in\)N )
  \(\Leftrightarrow\)A <  \(\frac{1}{4}\)( đpcm ) .

29 tháng 4 2017

Bạn Phùng Quang Thịnh làm đúng hết rồi 

\(\frac{2x+3y}{x-y}=\frac{2}{3}\)

\(\Leftrightarrow3.\left(2x+3y\right)=2.\left(x-y\right)\)

\(\Leftrightarrow6x+9y=2x-2y\)

\(\Leftrightarrow6x-2x=-2y-9y\)

\(\Leftrightarrow4x=-11y\)

\(\Leftrightarrow\frac{x}{y}=\frac{-11}{4}\)

7 tháng 6 2019

\(\frac{2x+3y}{x-y}=\frac{2}{3}\)

\(\rightarrow\left(2x+3y\right)\cdot3=\left(x-y\right)\cdot2\)

\(\rightarrow6x+9y=2x-2y\)

\(\rightarrow6x-2x=-9y-2y\)

\(\rightarrow4x=-11y\)

Suy ngược lại

\(\Rightarrow\frac{4}{-11}=\frac{x}{y}\)