\(\frac{a}{b}\)=\(\frac{c}{d}\)

Chứng minh rằng :...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 8 2019

Ta có : \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)

=> \(\frac{a}{c}=\frac{3a}{3c}=\frac{b}{d}=\frac{3a+b}{3c+d}\)

=> \(\frac{a}{3a+b}=\frac{c}{3c+d}\).

12 tháng 8 2019

Lười suy nghĩ nên ta cứ dùng cách đặt k.

\(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk;c=dk\)

a)ĐK:...

\(\frac{a}{3a+b}=\frac{bk}{3bk+b}=\frac{bk}{b\left(3k+1\right)}=\frac{k}{3k+1}\) (1)

Lại có: \(\frac{c}{3c+d}=\frac{dk}{3dk+d}=\frac{dk}{d\left(3k+1\right)}=\frac{k}{3k+1}\) (2)

Từ (1) và (2) ta suy ra đpcm: \(\frac{a}{3a+b}=\frac{c}{3c+d}\left(=\frac{k}{3k+1}\right)\)

12 tháng 8 2019

\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}.\)

\(\frac{a}{c}=\frac{3a}{3c}\)

\(\Rightarrow\frac{3a}{3c}=\frac{b}{d}.\)

Áp dụng tính chất dãy tỉ số bằng nhau ta được:

\(\frac{3a}{3c}=\frac{b}{d}=\frac{3a+b}{3c+d}\)

Ta có \(\frac{a}{c}=\frac{3a+b}{3c+d}\)

=> \(\frac{a}{3a+b}=\frac{c}{3c+d}\left(đpcm\right).\)

Chúc bạn học tốt!

23 tháng 11 2019

a) \(\frac{a}{b}=\frac{c}{d}\)

\(\frac{a}{b}=\frac{c}{d}\)<=>\(\frac{a}{c}=\frac{b}{d}\)

áp dụng t/c dãy tỉ số = nhau : 

\(\frac{a}{c}=\frac{b}{d}\)\(=\frac{a-b}{c-d}\) <=> \(\frac{a}{c}\)\(=\frac{a-b}{c-d}\)<=> \(\frac{a}{a-b}=\frac{c}{c-d}\)

mấy bài kia cũng tương tự em ạ !

gợi ý: đặt chung cho cả 4 phần a/b = c/d = k( k khác 0)

                                               => a=bk; c=dk

rồi thay vào các biểu thức

1 tháng 10 2017

1, \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{3a}{3c}=\frac{b}{d}=\frac{3a+b}{3c+d}\Rightarrow\frac{a}{c}=\frac{3a+b}{3c+d}\Rightarrow\frac{a}{3a+b}=\frac{c}{3c+d}\)

2, a, Ta có: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a}{c}\cdot\frac{a}{c}=\frac{a}{c}\cdot\frac{b}{d}\Rightarrow\frac{a^2}{c^2}=\frac{ab}{cd}\)

\(\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a}{c}\cdot\frac{b}{d}=\frac{b}{d}\cdot\frac{b}{d}\Rightarrow\frac{ab}{cd}=\frac{b^2}{d^2}\)

\(\Rightarrow\frac{ab}{cd}=\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2-b^2}{c^2-d^2}\)

b, Ta có: \(\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\Rightarrow\frac{a}{c}\cdot\frac{b}{d}=\frac{a-b}{c-d}\cdot\frac{a-b}{c-d}\Rightarrow\frac{ab}{cd}=\frac{\left(a-b\right)^2}{\left(c-d\right)^2}\)

3 tháng 10 2016

Giải:

Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=b.k,c=d.k\)

a) Ta có:

\(\frac{a}{3a+b}=\frac{b.k}{3.b.k+b}=\frac{b.k}{b\left(3k+1\right)}=\frac{k}{3k+1}\) (1)

\(\frac{c}{3c+d}=\frac{dk}{3dk+d}=\frac{dk}{d\left(3k+1\right)}=\frac{k}{3k+1}\) (2)

Từ (1) và (2) suy ra \(\frac{a}{3a+b}=\frac{c}{3c+d}\)

b) Ta có:

\(\frac{\left(a-b\right)^2}{\left(c-d\right)^2}=\frac{\left(bk-b\right)^2}{\left(dk-d\right)^2}=\frac{\left[b\left(k-1\right)\right]^2}{\left[d\left(k-1\right)\right]^2}=\frac{b^2}{d^2}\) (1)

\(\frac{ab}{cd}=\frac{bkb}{dkd}=\frac{b^2}{d^2}\) (2)

Từ (1) và (2) suy ra \(\frac{\left(a-b\right)^2}{\left(c-d\right)^2}=\frac{ab}{cd}\)

19 tháng 10 2021

\(a,\frac{a}{b}=\frac{c}{d}\Leftrightarrow\frac{a}{c}=\frac{b}{d}\)

\(\Rightarrow\frac{a}{c}+1=\frac{b}{d}+1\)

\(\Rightarrow\frac{a}{c}+\frac{c}{c}=\frac{b}{d}+\frac{d}{d}\)

\(\Rightarrow\frac{a+c}{c}=\frac{b+d}{d}\)

19 tháng 10 2021

Ta có :

\(\frac{a}{b}=\frac{c}{d}\Leftrightarrow\frac{a}{c}=\frac{b}{d}\)

\(\Leftrightarrow\frac{3a}{3c}=\frac{5b}{5d}=\frac{3a+5b}{3c+5d}=\frac{3a-5b}{3c-5d}\)

\(\Rightarrow\frac{3a+5b}{3a-5b}=\frac{3a+5d}{3c-5d}\)

AH
Akai Haruma
Giáo viên
30 tháng 6 2019

Lời giải:
Đặt \(\frac{a}{b}=\frac{c}{d}=t\Rightarrow a=bt; c=dt\)

Khi đó:

a) Đề bài sai. Bạn xem lại đề.

b) Cần thêm điều kiện $a\neq \pm b; c\neq \pm d$

Khi đó \(t=\frac{a}{b}=\frac{c}{d}\neq \pm 1\)

\(\frac{a+b}{c+d}=\frac{bt+b}{dt+d}=\frac{b(t+1)}{d(t+1)}=\frac{b}{d}\)

\(\frac{a-b}{c-d}=\frac{bt-b}{dt-d}=\frac{b(t-1)}{d(t-1)}=\frac{b}{d}\)

\(\Rightarrow \frac{a+b}{c+d}=\frac{a-b}{c-d}\) (đpcm)

3 tháng 12 2019

Ta có: \(\frac{3a+4b}{3a-4b}=\frac{3c+4d}{3c-4d}\)

\(\Rightarrow\frac{3a+4b}{3a-4b}-1=\frac{3c+4d}{3c-4d}-1\)

\(\Leftrightarrow\frac{8b}{3a-4b}=\frac{8d}{3c-4d}\)

\(\Rightarrow b\left(3c-4d\right)=d\left(3a-4b\right)\)

\(\Leftrightarrow3bc=3ad\)

\(\Rightarrow\frac{a}{b}=\frac{c}{d}\left(đpcm\right)\)

14 tháng 11 2016

Đặt Bằng a = bk 

c = dk Rồi thay vào biểu thức nha bạn

14 tháng 11 2016

thank you

1 tháng 12 2019

Ta có: \(\frac{a}{b}=\frac{c}{d}\)

=> ad = bc 

=> 3ac + ad = 3ac + bc

=> a(3c + d) = c(3a + b)

=> \(\frac{a}{3a+b}=\frac{c}{3a+d}\) (ĐPCM)

1 tháng 12 2019

b) Ta có:

\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)

đặt \(\frac{a}{c}=k\Rightarrow\frac{b}{d}=k\)

=> a = c.k; b = d.k

=> a2 = c2.k2; b2 = d2.k2

=> \(\frac{a^2+c^2}{b^2+d^2}=\frac{\left(c^2.k^2\right)+c^2}{\left(d^2.k^2\right)+d^2}\)\(\frac{c^2\left(k^2+1\right)}{d^2\left(k^2+1\right)}\)=\(\frac{c^2}{d^2}=\frac{a^2}{b^2}=\frac{ac}{bd}\)

=> ĐPCM