\(\Delta ABC\)(C=40 độ) đường cao AH ,tia p/giác của
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔAHD vuông tại H và ΔAKD vuông tại K có

AD chung

góc HAD=góc KAD

Do đo:ΔAHD=ΔAKD

b: Tacó: AH=AK

DH=DK

Do đó: AD là đường trung trực của HK

hay AD vuông góc với KH

c: Gọi M là giao điểm của CE và AH

Xét ΔCAM có

CH là dường cao

AE là đường cao

CH cắt AE tại D

DO đo: D là trực tâm

=>M,D,K thẳng hàng

hay AH,KD,CE đồng quy

Câu 1: 

a: Xét ΔABE vuông tại A và ΔHBE vuông tại H có

BE chung

góc ABE=góc HBE

Do đo: ΔABE=ΔHBE

b: Ta có:BA=BH

EA=EH
Do đó:BE là đường trung trực của AH

c: Ta có: EA=EH

mà EH<EC

nên EA<EC

23 tháng 4 2017

a) Xét ΔBAE vuông tại A và ΔBDE vuông tại D có: BA = BD (gt); BE cạnh chung

Vậy: ΔBAE=ΔBDE (ch, cgv)

b), c) Gọi I là giao điểm của BE và AD.

Xét ΔABI và ΔDBI có: BA = BD (gt)

\(\widehat{ABI}\) = \(\widehat{DBI}\) (2 góc tương ứng)

BI cạnh chung

Vậy ΔABI và ΔDBI (c.g.c)

\(\Rightarrow\) \(\widehat{BAD}\) = \(\widehat{BDA}\) (2 góc tương ứng)

Ta có: \(\widehat{BAC} = 90\)\(^o\)\(\widehat{AHD} = 90\)\(^o\),

\(\widehat{BAD}\)= \(\widehat{BDA}\) \(\Rightarrow\)\(\widehat{HAD} = \widehat{DAK}\)

Vậy AD là tia phân giác \(\widehat{HAC}\)

Xét ΔHAD vuông tại H và ΔKAD vuông tại K có:

\(\widehat{HAD} = \widehat{KAD}\) (cmt)

AD cạnh chung

Vậy: ΔHAD = ΔKAD (ch, gn)

\(\Rightarrow\) AH = AK (2 cạnh tương ứng)

d) F đâu ra

1. Cho tam giác ABC có \(\widehat{A}\); AB < AC ; phân giác BE, E \(\in\) AC . Lấy điểm H thuộc cạnh BC sao cho BH = BA. a) Chứng minh EH \(\perp\)BC . b) Chứng minh BE là đường trung trực của AH. c) Đường thẳng EH cắt đường thẳng AB ở K. Chứng minh EK = EC. d) Chứng minh AH // KC. e) Gọi M là trung điểm của KC. Chứng minh ba điểm B, E, M thẳng hàng. 2. a) Cho tam giác MNP vuông tại N biết MN = 20cm; MP = 25cm. Tìm độ dài...
Đọc tiếp

1. Cho tam giác ABC có \(\widehat{A}\); AB < AC ; phân giác BE, E \(\in\) AC . Lấy điểm H thuộc cạnh BC sao cho BH = BA.
a) Chứng minh EH \(\perp\)BC .
b) Chứng minh BE là đường trung trực của AH.
c) Đường thẳng EH cắt đường thẳng AB ở K. Chứng minh EK = EC.
d) Chứng minh AH // KC.
e) Gọi M là trung điểm của KC. Chứng minh ba điểm B, E, M thẳng hàng.

2. a) Cho tam giác MNP vuông tại N biết MN = 20cm; MP = 25cm.
Tìm độ dài cạnh NP?
b) Cho tam giác DEF có DE = 10 cm; DF = 24cm; EF = 26cm. Chứng minh tam giác DEF vuông?

3. Cho \(\Delta\)ABC cân tại A có AB = 5cm, BC = 6cm.
Kẻ AD vuông góc với BC (D \(\in\) BC ).
a) Tìm các tam giác bằng nhau trong hình.
b) Tính độ dài AD ?

4. Cho tam giác ABC vuông tại A, có \(\widehat{B}\) và AB = 5cm. Tia phân giác của góc B cắt AC tại D. Kẻ DE vuông góc với BC tại E.
a) Chứng minh: \(\Delta\)ABD = \(\Delta\)EBD.
b) Chứng minh: \(\Delta\)ABE là tam giác đều.
c) Tính độ dài cạnh BC.

5. Cho góc xOy .Trên Ox lấy điểm A , trên Oy lấy điểm B sao cho
OA = OB . Qua A kẻ đường thẳng a vuông góc với Ox ; qua B kẻ đường thẳng b vuông góc với Oy . Hai đường thẳng a và b cắt nhau tại C . Chứng minh rằng :
a ) \(\Delta\)OAC = \(\Delta\)OBC.

b) CA = CB
c) OC là phân giác của góc xOy .

6. Cho \(\Delta\)ABC cân tại A, có \(\widehat{B}\) = 700 . Tính độ \(\widehat{A}\) ?

7. Cho \(\Delta\)ABC cân tại A, AB = AC = 5 cm; BC = 8 cm. Kẻ AH \(\perp\) BC (H \(\in\)BC)
a) Chứng minh HB = HC
b) Tính AH.
c) Kẻ HD \(\perp\) AB (D \(\in\)AB); HE \(\perp\) AC (E \(\in\)AC). CMR: \(\Delta\)HDE là tam giác cân.

1
12 tháng 5 2018

a. Xét tam giác BAE và tam giác BHE có:

BA=BH

BE chung

góc ABE=HBE ( phân giác BE )

=> tam giác BAE = tam giác BHE (c.g.c)

=> góc BAE=BHE ( 2 góc tương ứng)

mà góc BAE= 90 độ

=> góc BHE=90 độ => EH ⊥BC .

b.tam giác BAE = tam giác BHE => BA=BH và AE=EH

=> BE là đường trung trực của AH

c.Xét tam giác AKE và tam giác HCE có:

góc AEK=HEC ( đối đỉnh)

AE=EH

góc EAK=EHC (= 90 độ)

=> tam giác AKE = tam giác HCE (g.c.g)

=> EK=EC

d.Có: BA=BH => tam giác BAH cân tại B

=> góc BHA= 180 độ - góc HBA / 2 (1)

Có: BC=BH+HC

BK=BA+AK

mà BH=BA

HC=AK ( do tam giác AKE = tam giác HCE )

=> BC=BK => tam giác BCK cân tại B

=> góc BCK=180 độ - góc HBA /2 (2)

Từ (1) (2) => góc BHA=BCK

mà 2 góc ở vị trí đồng vị

=> AH//CK

e. Xét tam giác BMC và tam giác BMK có:

BC=BK

CM=KM ( M là trung điểm của KC )​

BM chung

=> tam giác BMC = tam giác BMK (c.c.c)

=> góc MBC=MBK => BM là tia phân giác của góc B

mà BE cũng là phân giác của góc B

=> ba điểm B, E, M thẳng hàng.

24 tháng 3 2020

Cho góc xOy = 120 độ, vẽ OA là tia phân giác của góc xOy.Kẻ AB vuông góc với Ox,AC vuông góc với Oy sao cho AB = AC.

a,Chứng minh AB = AC.

b,Tính số đo góc CAO

c,Tam giác ABC là tam giác gì ? Vì sao ?

d,Cho AO = 25 cm, AC =20 cm.Tính độ dài cạnh BO

e,Tính số đo góc CBO?

g,Chứng minh AO là đường trung trực của BC?

Các bạn giúp mình với,huhukhocroi

6 tháng 4 2017

Bạn tự vẽ hình giùm mình nhé!
a, Xét tam giác BHA và tam giác BHE có:
Góc BHA = Góc BHE = 90 độ ( gt )
BH chung
Góc ABH = Góc EBH ( gt )
=> Tam giác BHA = tam giác BHE ( góc nhọn - cạnh góc vuông )

b, Tam giác BHA = tam giác BHE ( cmt)
=> AB = EB ( cạnh tương ứng )
Xét tam giác BAD và tam giác BED có
BA = BE ( cmt )
Góc ABD = Góc EBD ( gt )
BD chung
=> Tam giác BAD = tam giác BED ( c.g.c )
=> Góc BED = Góc BAD = 90 độ
=> ED vuông góc với BC

c, Tam giác BAD = tam giác BED ( cmt )
=> AD = DE ( cạnh tương ứng ) (1)
Vì DE vuông góc với BC (cmt) nên tam giác DEC vuông tại E
=> DE < DC ( cạnh góc vuông < cạnh huyền ) (2)
Từ (1) và (2) => AD < DC

c, Có AK vuông góc với BC ( gt )
DE vuông góc với BC (cmt)
=> AK // DE
=> Góc KAE = Góc DEA ( so le trong ) (3)
Tam giác BAD = tam giác BED ( cmt )
=> AD = DE
=> Tam giác DAE cân tại D
=> góc DEA = góc DAE (4)
Từ (3) và (4) => Góc KAE = góc DAE
=> AE là phân giác của góc KAC

6 tháng 4 2017

Bạn có thể kiểm tra lại đề được không ?! Ý a tam giác BAH và BED không bằng nhau bạn ạ