Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Câu 1:
a: Xét ΔABE vuông tại A và ΔHBE vuông tại H có
BE chung
góc ABE=góc HBE
Do đo: ΔABE=ΔHBE
b: Ta có:BA=BH
EA=EH
Do đó:BE là đường trung trực của AH
c: Ta có: EA=EH
mà EH<EC
nên EA<EC

a) Xét ΔBAE vuông tại A và ΔBDE vuông tại D có: BA = BD (gt); BE cạnh chung
Vậy: ΔBAE=ΔBDE (ch, cgv)
b), c) Gọi I là giao điểm của BE và AD.
Xét ΔABI và ΔDBI có: BA = BD (gt)
\(\widehat{ABI}\) = \(\widehat{DBI}\) (2 góc tương ứng)
BI cạnh chung
Vậy ΔABI và ΔDBI (c.g.c)
\(\Rightarrow\) \(\widehat{BAD}\) = \(\widehat{BDA}\) (2 góc tương ứng)
Ta có: \(\widehat{BAC} = 90\)\(^o\) và \(\widehat{AHD} = 90\)\(^o\),
mà \(\widehat{BAD}\)= \(\widehat{BDA}\) \(\Rightarrow\)\(\widehat{HAD} = \widehat{DAK}\)
Vậy AD là tia phân giác \(\widehat{HAC}\)
Xét ΔHAD vuông tại H và ΔKAD vuông tại K có:
\(\widehat{HAD} = \widehat{KAD}\) (cmt)
AD cạnh chung
Vậy: ΔHAD = ΔKAD (ch, gn)
\(\Rightarrow\) AH = AK (2 cạnh tương ứng)
d) F đâu ra

a. Xét tam giác BAE và tam giác BHE có:
BA=BH
BE chung
góc ABE=HBE ( phân giác BE )
=> tam giác BAE = tam giác BHE (c.g.c)
=> góc BAE=BHE ( 2 góc tương ứng)
mà góc BAE= 90 độ
=> góc BHE=90 độ => EH ⊥BC .
b.tam giác BAE = tam giác BHE => BA=BH và AE=EH
=> BE là đường trung trực của AH
c.Xét tam giác AKE và tam giác HCE có:
góc AEK=HEC ( đối đỉnh)
AE=EH
góc EAK=EHC (= 90 độ)
=> tam giác AKE = tam giác HCE (g.c.g)
=> EK=EC
d.Có: BA=BH => tam giác BAH cân tại B
=> góc BHA= 180 độ - góc HBA / 2 (1)
Có: BC=BH+HC
BK=BA+AK
mà BH=BA
HC=AK ( do tam giác AKE = tam giác HCE )
=> BC=BK => tam giác BCK cân tại B
=> góc BCK=180 độ - góc HBA /2 (2)
Từ (1) (2) => góc BHA=BCK
mà 2 góc ở vị trí đồng vị
=> AH//CK
e. Xét tam giác BMC và tam giác BMK có:
BC=BK
CM=KM ( M là trung điểm của KC )
BM chung
=> tam giác BMC = tam giác BMK (c.c.c)
=> góc MBC=MBK => BM là tia phân giác của góc B
mà BE cũng là phân giác của góc B
=> ba điểm B, E, M thẳng hàng.
Cho góc xOy = 120 độ, vẽ OA là tia phân giác của góc xOy.Kẻ AB vuông góc với Ox,AC vuông góc với Oy sao cho AB = AC.
a,Chứng minh AB = AC.
b,Tính số đo góc CAO
c,Tam giác ABC là tam giác gì ? Vì sao ?
d,Cho AO = 25 cm, AC =20 cm.Tính độ dài cạnh BO
e,Tính số đo góc CBO?
g,Chứng minh AO là đường trung trực của BC?
Các bạn giúp mình với,huhu

Bạn tự vẽ hình giùm mình nhé!
a, Xét tam giác BHA và tam giác BHE có:
Góc BHA = Góc BHE = 90 độ ( gt )
BH chung
Góc ABH = Góc EBH ( gt )
=> Tam giác BHA = tam giác BHE ( góc nhọn - cạnh góc vuông )
b, Tam giác BHA = tam giác BHE ( cmt)
=> AB = EB ( cạnh tương ứng )
Xét tam giác BAD và tam giác BED có
BA = BE ( cmt )
Góc ABD = Góc EBD ( gt )
BD chung
=> Tam giác BAD = tam giác BED ( c.g.c )
=> Góc BED = Góc BAD = 90 độ
=> ED vuông góc với BC
c, Tam giác BAD = tam giác BED ( cmt )
=> AD = DE ( cạnh tương ứng ) (1)
Vì DE vuông góc với BC (cmt) nên tam giác DEC vuông tại E
=> DE < DC ( cạnh góc vuông < cạnh huyền ) (2)
Từ (1) và (2) => AD < DC
c, Có AK vuông góc với BC ( gt )
DE vuông góc với BC (cmt)
=> AK // DE
=> Góc KAE = Góc DEA ( so le trong ) (3)
Tam giác BAD = tam giác BED ( cmt )
=> AD = DE
=> Tam giác DAE cân tại D
=> góc DEA = góc DAE (4)
Từ (3) và (4) => Góc KAE = góc DAE
=> AE là phân giác của góc KAC
Bạn có thể kiểm tra lại đề được không ?! Ý a tam giác BAH và BED không bằng nhau bạn ạ
a: Xét ΔAHD vuông tại H và ΔAKD vuông tại K có
AD chung
góc HAD=góc KAD
Do đo:ΔAHD=ΔAKD
b: Tacó: AH=AK
DH=DK
Do đó: AD là đường trung trực của HK
hay AD vuông góc với KH
c: Gọi M là giao điểm của CE và AH
Xét ΔCAM có
CH là dường cao
AE là đường cao
CH cắt AE tại D
DO đo: D là trực tâm
=>M,D,K thẳng hàng
hay AH,KD,CE đồng quy