Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1)
a) Tứ giác AIHK có 3 góc vuông \(\widehat{HKA}=\widehat{HIA}=\widehat{KAI}=90^0\)
Nên suy ra góc còn lại cũng vuông.Tứ giác có 4 góc vuông là hình chữ nhật
b) Câu này không đúng rồi bạn
Nếu thực sự hai tam giác kia đồng dạng thì đầu bài phải cho ABC vuông cân
Vì nếu góc AKI = góc ABC = 45 độ ( IK là đường chéo đồng thời là tia phân giác của hình chữ nhật)
c) Ta có : Theo hệ thức lượng trong tam giác ABC vuông
\(AB^2=BC.BH=13.4\)
\(\Rightarrow AB=2\sqrt{13}\)
\(AC=\sqrt{9\cdot13}=3\sqrt{13}\)
Vậy \(S_{ABC}=\frac{AB\cdot AC}{2}=\frac{6\cdot13}{2}=39\left(cm^2\right)\)
Bài 2)
a) \(ED=AD-AE=17-8=9\)
Xét tỉ lệ giữa hai cạnh góc vuông trong hai tam giác ABE và DEC ta thấy
\(\frac{AB}{AE}=\frac{ED}{DC}\Leftrightarrow\frac{6}{8}=\frac{9}{12}=\frac{3}{4}\)
Vậy \(\Delta ABE~\Delta DEC\)
b) \(\frac{S_{ABE}}{S_{DEC}}=\frac{AB\cdot AE\cdot\frac{1}{2}}{DE\cdot DC\cdot\frac{1}{2}}=\frac{6\cdot8}{9\cdot12}=\frac{4}{9}\)
c) Kẻ BK vuông góc DC.Suy ra tứ giác ABKD là hình chữ nhật vì có 4 góc vuông
Nên BK = AD và AB = DK
\(\Rightarrow KC=DC-DK=12-6=6\)
Theo định lý Pytago ta có
\(BC=\sqrt{BK^2+KC^2}=\sqrt{17^2+6^2}=5\sqrt{13}\)
Bài Làm:
1, Ta có: \(A=x^2-x+1\)
\(=x^2-2.\dfrac{1}{2}x+\dfrac{1}{4}+\dfrac{3}{4}\)
= \(\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)
Vì: \(\left(x-\dfrac{1}{2}\right)^2\ge0\forall x\)
\(\Rightarrow\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall x\)
\(\Rightarrow A\ge\dfrac{3}{4}\forall x\)
Dấu " = " xảy ra khi: \(x-\dfrac{1}{2}=0\)
\(\Leftrightarrow x=\dfrac{1}{2}\)
Vậy Min \(A=\dfrac{3}{4}\) khi \(x=\dfrac{1}{2}\).
Chúc pạn hok tốt!!!
2, P tự vẽ hình nha!!!
a, Xét \(\Delta ABD\) và \(\Delta CBF\) có:
\(\widehat{B}\): chung
\(\widehat{ADB}=\widehat{CFB}=90^0\)
\(\Rightarrow\Delta ABD\sim\Delta CBF\)( g.g )
b) Xét \(\Delta AFH\) và \(\Delta CDH\) có:
\(\widehat{AFH}=\widehat{CDH}=90^0\)
\(\widehat{AHF}=\widehat{DHC}\) ( Đối đỉnh )
\(\Rightarrow\Delta AFH\sim\Delta CDH\) ( g.g )
\(\Rightarrow\dfrac{AH}{CH}=\dfrac{FH}{HD}\)
\(\Rightarrow AH.HD=CH.HE\)
a: Xét ΔABD và ΔACB có
góc ABD=góc ACB
góc BAD chung
Do đo: ΔABD đồng dạng với ΔACB
b: Ta có: ΔABD đồng dạng với ΔACB
nên AD/AB=AB/AC
=>AD/2=2/4=1/2
=>AD=1cm
=>DC=3cm