Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bai1
\(3a\left(2+b\right)-a\left(1-b\right)-4ab=6a+3ab-a+ab-4ab=5a=\frac{5}{229}\)
bai3
\(M=4\left(X-6\right)-x^2\left(2+3x\right)+x\left(5x-4\right)+3x^2\left(x-1\right)=\)
\(4x-24-2x^2-3x^3+5x^2-4x+3x^3-3x=-24\)
bai 4
\(\text{a(x-y)+b(y-x)}=\left(x-y\right)\left(a-b\right)\)
bai 5
ta co cong thuc tinh tong 1+2+3+4+5+...+150=\(\frac{\left(1+150\right)150}{2}=11325\)
a11325
bai 6
\(p=x\left(5x+15y\right)-5y\left(3x-2y\right)-5y^2+10\)
\(=5x^2+15xy-15xy+10y^2-5y^2+10=5x^2+5y^2+10=5\left(x^2+y^2\right)+10\)
ta nhan thay rang de P=10 thi (x2+y2)=0 suy ra x=y=0
P=0 thi (x2+y2)= -2 ma so chinh phuong bao gioi cung lon hon 0 nen truong hop nay vo nghiem de thoa man
\(2a,\left(6x+7\right)\left(2x-3\right)-\left(4x+1\right)\left(3x-\frac{7}{4}\right)\)
\(=12x^2-18x+14x-21-12x^2+7x-3x+\frac{7}{4}\)
\(=-21+\frac{7}{4}\)chứng tỏ biểu thức ko phụ thuộc vào biến x
3, Đặt 2n+1=a^2; 3n+1=b^2=>a^2+b^2=5n+2 chia 5 dư 2
Mà số chính phương chia 5 chỉ có thể dư 0,1,4=>a^2 chia 5 dư 1, b^2 chia 5 dư 1=>n chia hết cho 5(1)
Tương tự ta có b^2-a^2=n
Vì số chính phươn lẻ chia 8 dư 1=>a^2 chia 8 dư 1 hay 2n chia hết cho 8=> n chia hết cho 4=> n chẵn
Vì n chẵn => b^2= 3n+1 lẻ => b^2 chia 8 dư 1
Do đó b^2-a^2 chia hết cho 8 hay n chia hết cho 8(2)
Từ (1) và (2)=> n chia hết cho 40
a) \(5x^2-2x\left(3x+\frac{3}{2}\right)=-x^2-3x=-x\left(x+3\right)=-3\left(3+3\right)=-18\)
b) \(3x\left(x-4y\right)-\frac{12}{5}y\left(y-5x\right)=3x^2-\frac{12}{5}y^2=3\left(x^2-\frac{4}{5}y^2\right)\)
\(=3\left(4^2-\frac{4}{5}.5^2\right)=3.\left(-4\right)=-12\)
c) \(\left(x-2\right)^2-\left(x+7\right)\left(x-7\right)=x^2-4x+4-x^2+49=-4x+53=-4.3+53=41\)
d) \(x^2+12x+36=\left(x+6\right)^2=\left(64+6\right)^2=70^2=4900\)
e) \(\left(x-3\right)^2-\left(x-4\right)\left(x+4\right)=x^2-6x+9-x^2+16=-6x+25=-6\left(-1\right)+25\)
= 31
f) \(\left(3x+2y\right)^2-4y\left(3x+y\right)=9x^2+12xy+4y^2-12xy-4y^2=9x^2=9\left(-\frac{1}{3}\right)^2=1\)
a) y(x2-y2)(x2+y2)-y(x4-y4)=y[(x2)2-(y2)2] - y(x4-y4)=y(x4-y4)-y(x4-y4)=0
vậy giá trị biểu thức không phụ thuộc vào biến (đpcm)
b) \(\left(\frac{1}{3}+2x\right)\left(4x^2-\frac{2}{3}x+\frac{1}{9}\right)-\left(8x^3-\frac{1}{27}\right)\)
\(=\left[\left(2x\right)^3+\left(\frac{1}{3}\right)^3\right]-\left(8x^3-\frac{1}{27}\right)=8x^3+\frac{1}{27}-8x^3+\frac{1}{27}=\frac{1}{54}\)
vậy giá trị biểu thức không phụ thuộc vào biến (đpcm)
c) (x - 1)^3 - (x - 1)(x^2 + x + 1) - 3(1 - x)x
= (x - 1)(x^2 + x + 1) - (x - 1)(x^2 + x + 1) - 3x(1 - x)
= x^3 - 3x^2 + 3x - 1 - x^3 + 1 - 3x + 3x^2
= 0 (đpcm)
1. Ta có:
\(\frac{1}{x}+\frac{1}{x\left(x+1\right)}+\frac{1}{\left(x+1\right)\left(x+2\right)}+...+\frac{1}{\left(x+2013\right)\left(x+2014\right)}\)
\(=\frac{1}{x}+\frac{1}{x}-\frac{1}{x+1}+\frac{1}{x+1}-\frac{1}{x+2}+...+\frac{1}{x+2013}-\frac{1}{x+2014}\)
\(=\frac{2}{x}-\frac{1}{x+2014}\)
\(=\frac{2\left(x+2014\right)}{x\left(x+2014\right)}-\frac{x}{x\left(x+2014\right)}\)
\(=\frac{2x+4028-x}{x\left(x+2014\right)}=\frac{x+4028}{x\left(x+2014\right)}\)
2a) ĐKXĐ: x \(\ne\)1 và x \(\ne\)-1
b) Ta có: A = \(\frac{x^2-2x+1}{x-1}+\frac{x^2+2x+1}{x+1}-3\)
A = \(\frac{\left(x-1\right)^2}{x-1}+\frac{\left(x+1\right)^2}{x+1}-3\)
A = \(x-1+x+1-3\)
A = \(2x-3\)
c) Với x = 3 => A = 2.3 - 3 = 3
c) Ta có: A = -2
=> 2x - 3 = -2
=> 2x = -2 + 3 = 1
=> x= 1/2
\(3,\frac{2}{xy}:\left(\frac{1}{x}-\frac{1}{y}\right)^2-\frac{x^2+y^2}{\left(x-y\right)^2}\)
\(=\frac{2}{xy}:\left[\left(\frac{1}{x}\right)^2-2.\frac{1}{x}.\frac{1}{y}+\left(\frac{1}{y}\right)^2\right]-\frac{x^2+y^2}{\left(x-y\right)^2}\)
\(=\frac{2}{xy}:\left[\frac{1}{x^2}-\frac{2}{xy}+\frac{1}{y^2}\right]-\frac{x^2+y^2}{x^2-2xy+y^2}\)
\(=\frac{2}{xy}:\left[\frac{y^2-2.xy+x^2}{x^2y^2}\right]-\frac{x^2+y^2}{\left(x-y\right)^2}\)
\(=\frac{2}{xy}.\frac{x^2y^2}{x^2-2xy+y^2}-\frac{x^2+y^2}{x^2-2xy+y^2}\)
\(=\frac{2xy}{x^2-2xy+y^2}+\frac{-x^2-y^2}{x^2-2xy-y^2}\)
\(=\frac{2xy-x^2-y^2}{x^2-2xy+y^2}=\frac{-\left(x^2-2xy+y^2\right)}{x^2-2xy+y^2}=-1\)
\(\frac{2011^3+11^3}{2011^3+2000^3}\)
\(=\frac{\left(2011+11\right)\left(2011^2-2011.11+11^2\right)}{\left(2011+2000\right)\left(2011^2-2011.2000+2000^2\right)}\)
\(=\frac{\left(2011+11\right)\left[2011^2-11\left(2011-11\right)\right]}{\left(2011+2000\right)\left[2011^2-2000\left(2011-2000\right)\right]}\)
\(=\frac{\left(2011+11\right)\left(2011^2-11.2000\right)}{\left(2011+2000\right)\left(2011^2-2000.11\right)}\)
\(=\frac{2011+11}{2011+2000}\left(2011^2-11.2000\ne0\right)\)
đpcm
Bài 1:
a) Đặt \(a=\dfrac{1}{229},b=\dfrac{1}{433}\), ta được
\(M=3a\left(2+b\right)-a\left(1-b\right)-4ab\)
\(M=6a+3ab-a+ab-4ab\)
\(M=5a\)
b) Ta có:
\(M=5a\)
\(M=\dfrac{5}{229}\)
Bài 2:
\(x=16\)
\(\Rightarrow x+1=17\left(1\right)\)
Thay (1) vào P, ta được:
\(P=x^4-\left(x+1\right)x^3+\left(x+1\right)x^2-\left(x+1\right)x+x+1+3\)
\(P=x^4-x^4-x^3+x^3+x^2-x^2-x+x+1+3\)
\(P=4\)
Bài 3:
\(4\left(x-6\right)-x^2\left(2+3x\right)+x\left(5x-4\right)+3x^2\left(x-1\right)\)
\(=4x-24-2x^2-3x^3+5x^2-4x+3x^3-3x^2\)
\(=-24\)
Vậy biểu thức không phụ thuộc vào x
Bài 4:
\(a\left(x-y\right)+b\left(y-x\right)\)
\(=a\left(x-y\right)-b\left(x-y\right)\)
\(=\left(x-y\right)\left(a-b\right)\)
Bài 5:
a) \(a.a^2.a^3.a^4.a^5a^6...a^{150}\)
\(=a^{1+2+3+4+5+6+...+150}\)
Đặt \(A=1+2+3+...+150\)
\(A=\dfrac{150-1+1}{2}\left(1+150\right)\)
\(A=75.151\)
\(A=2265\)
Vậy 1 + 2 + 3 +...+ 150 = 2265 (1)
Thay (1) vào ta được
\(a^{1+2+3+4+5+6+...+150}=a^{2265}\)
b) \(x^{2-k}.x^{1-k}.x^{2k-3}\)
\(=x^{2-k+1-k+2k-3}\)
\(=x^0\)
\(=1\)
Bài 6:
a) \(P=x\left(5x+15y\right)-5y\left(3x-2y\right)-5\left(y^2-2\right)\)
\(P=5x^2+15xy-15xy+10y^2-5y^2+10\)
\(P=5x^2+5y^2+10\)
b) \(P=0\)
\(\Rightarrow5x^2+5y^2+10=0\)
\(\Rightarrow5\left(x^2+y^2+2\right)=0\)
\(\Rightarrow x^2+y^2+2=0\)
\(\Rightarrow x^2+y^2=-2\)
Vì \(x^2\ge0\)
\(y^2\ge0\)
\(\Rightarrow x^2+y^2\ge0\)
Mà \(x^2+y^2=-2\)
=> Không tồn tại cặp số x và y để P = 0
\(P=10\)
\(\Rightarrow5x^2+5y^2+10=10\)
\(\Rightarrow5x^2+5y^2=0\)
\(\Rightarrow5\left(x^2+y^2\right)=0\)
\(\Rightarrow x^2+y^2=0\)
Vì \(x^2\ge0\) với mọi x
\(y^2\ge0\) với mọi y
\(\Rightarrow x^2+y^2\ge0\)
Mà \(x^2+y^2=0\)
\(\Rightarrow\left\{{}\begin{matrix}x^2=0\\y^2=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)