\(M=\frac{3}{229}\left(2+\frac{1}{433}\right)-\frac{1}{229}.\frac{432}...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 8 2018

Bài 1:

a) Đặt \(a=\dfrac{1}{229},b=\dfrac{1}{433}\), ta được

\(M=3a\left(2+b\right)-a\left(1-b\right)-4ab\)

\(M=6a+3ab-a+ab-4ab\)

\(M=5a\)

b) Ta có:

\(M=5a\)

\(M=\dfrac{5}{229}\)

Bài 2:

\(x=16\)

\(\Rightarrow x+1=17\left(1\right)\)

Thay (1) vào P, ta được:

\(P=x^4-\left(x+1\right)x^3+\left(x+1\right)x^2-\left(x+1\right)x+x+1+3\)

\(P=x^4-x^4-x^3+x^3+x^2-x^2-x+x+1+3\)

\(P=4\)

Bài 3:

\(4\left(x-6\right)-x^2\left(2+3x\right)+x\left(5x-4\right)+3x^2\left(x-1\right)\)

\(=4x-24-2x^2-3x^3+5x^2-4x+3x^3-3x^2\)

\(=-24\)

Vậy biểu thức không phụ thuộc vào x

Bài 4:

\(a\left(x-y\right)+b\left(y-x\right)\)

\(=a\left(x-y\right)-b\left(x-y\right)\)

\(=\left(x-y\right)\left(a-b\right)\)

Bài 5:

a) \(a.a^2.a^3.a^4.a^5a^6...a^{150}\)

\(=a^{1+2+3+4+5+6+...+150}\)

Đặt \(A=1+2+3+...+150\)

\(A=\dfrac{150-1+1}{2}\left(1+150\right)\)

\(A=75.151\)

\(A=2265\)

Vậy 1 + 2 + 3 +...+ 150 = 2265 (1)

Thay (1) vào ta được

\(a^{1+2+3+4+5+6+...+150}=a^{2265}\)

b) \(x^{2-k}.x^{1-k}.x^{2k-3}\)

\(=x^{2-k+1-k+2k-3}\)

\(=x^0\)

\(=1\)

Bài 6:

a) \(P=x\left(5x+15y\right)-5y\left(3x-2y\right)-5\left(y^2-2\right)\)

\(P=5x^2+15xy-15xy+10y^2-5y^2+10\)

\(P=5x^2+5y^2+10\)

b) \(P=0\)

\(\Rightarrow5x^2+5y^2+10=0\)

\(\Rightarrow5\left(x^2+y^2+2\right)=0\)

\(\Rightarrow x^2+y^2+2=0\)

\(\Rightarrow x^2+y^2=-2\)

\(x^2\ge0\)

\(y^2\ge0\)

\(\Rightarrow x^2+y^2\ge0\)

\(x^2+y^2=-2\)

=> Không tồn tại cặp số x và y để P = 0

\(P=10\)

\(\Rightarrow5x^2+5y^2+10=10\)

\(\Rightarrow5x^2+5y^2=0\)

\(\Rightarrow5\left(x^2+y^2\right)=0\)

\(\Rightarrow x^2+y^2=0\)

\(x^2\ge0\) với mọi x

\(y^2\ge0\) với mọi y

\(\Rightarrow x^2+y^2\ge0\)

\(x^2+y^2=0\)

\(\Rightarrow\left\{{}\begin{matrix}x^2=0\\y^2=0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)

1.Cho biểu thức: \(M=\frac{3}{229}\left(2+\frac{1}{433}\right)-\frac{1}{229}.\frac{432}{433}-\frac{4}{229.433}\)  a,Đặt \(a=\frac{1}{229},b=\frac{1}{433}\) ,rút gọn M theo a,bb, Tính giá trị của M.2. Tính giá trị của biểu thức:  \(P=x^4-17x^3+17x^2-17x+20\)khi x=163 Chứng tỏ rằng các biểu thức sau ko phụ thuộc vào giá trị của biến x:\(4\left(x-6\right)-x^2\left(2+3x\right)+x\left(5x-4\right)+3x^2\left(x-1\right)\)4. Biến tổng sau...
Đọc tiếp

1.Cho biểu thức:

 \(M=\frac{3}{229}\left(2+\frac{1}{433}\right)-\frac{1}{229}.\frac{432}{433}-\frac{4}{229.433}\)  

a,Đặt \(a=\frac{1}{229},b=\frac{1}{433}\) ,rút gọn M theo a,b

b, Tính giá trị của M.

2. Tính giá trị của biểu thức:  \(P=x^4-17x^3+17x^2-17x+20\)khi x=16

3 Chứng tỏ rằng các biểu thức sau ko phụ thuộc vào giá trị của biến x:

\(4\left(x-6\right)-x^2\left(2+3x\right)+x\left(5x-4\right)+3x^2\left(x-1\right)\)

4. Biến tổng sau thành tích:  a(x-y)+b(y-x)

5.Nhân các lũy thừa có cùng cơ số 

a,\(a.a^2.a^3.a^4a^5.a^6...a^{150}\)

b, \(x^{2-k}.x^{1-k}.x^{2k-3}\)\(\left(k\in N,x\ne0\right)\)

6. Xét biểu thức:

\(P=x\left(5x+15y\right)-5y\left(3x-2y\right)-5\left(y^2-2\right)\)

a, Rút gọn P 

b, Có hay k cặp số (x,y) để P=0; P=10?

7.Cho \(\Delta\)ABC nhọn. Vẽ ra phía ngoài của tam giác vuông cân  ABE tại B và tam giác vuông cân ACF tại C. Trên tia đối của tia AH lấy điểm I sao cho AI=BC(H là chân đường vuông góc hạ từ A tới BC. Chứng minh:

a,  \(\Delta\) ABI = \(\Delta\) BEC  

b, BI=CE và BI vuông góc vs CE

c, 3 đường thẳng AH,CE và BF đồng quy tại 1 điểm

        Mọi ng giải hộ mik mấy bài này vs ạ, bài nào mấy bạn giải đc thì giải hộ vs ạ  . Giải chi tiết nha. Cảm ơn ạ

4
29 tháng 8 2018

bai1 

\(3a\left(2+b\right)-a\left(1-b\right)-4ab=6a+3ab-a+ab-4ab=5a=\frac{5}{229}\)

29 tháng 8 2018

bai3

\(M=4\left(X-6\right)-x^2\left(2+3x\right)+x\left(5x-4\right)+3x^2\left(x-1\right)=\)

\(4x-24-2x^2-3x^3+5x^2-4x+3x^3-3x=-24\)

bai 4

\(\text{a(x-y)+b(y-x)}=\left(x-y\right)\left(a-b\right)\)

bai 5

ta co cong thuc tinh tong 1+2+3+4+5+...+150=\(\frac{\left(1+150\right)150}{2}=11325\)

a11325

bai 6

\(p=x\left(5x+15y\right)-5y\left(3x-2y\right)-5y^2+10\)

\(=5x^2+15xy-15xy+10y^2-5y^2+10=5x^2+5y^2+10=5\left(x^2+y^2\right)+10\)

ta nhan thay rang de P=10  thi (x2+y2)=0 suy ra x=y=0 

                                  P=0 thi (x2+y2)=  -2  ma so chinh phuong bao gioi cung lon hon 0 nen truong hop nay vo nghiem de thoa man

17 tháng 8 2018

\(2a,\left(6x+7\right)\left(2x-3\right)-\left(4x+1\right)\left(3x-\frac{7}{4}\right)\)

\(=12x^2-18x+14x-21-12x^2+7x-3x+\frac{7}{4}\)

\(=-21+\frac{7}{4}\)chứng tỏ biểu thức ko phụ thuộc vào biến x

17 tháng 8 2018

3, Đặt 2n+1=a^2; 3n+1=b^2=>a^2+b^2=5n+2 chia 5 dư 2

Mà số chính phương chia 5 chỉ có thể dư 0,1,4=>a^2 chia 5 dư 1, b^2 chia 5 dư 1=>n chia hết cho 5(1)

Tương tự ta có b^2-a^2=n

Vì số chính phươn lẻ chia 8 dư 1=>a^2 chia 8 dư 1 hay 2n chia hết cho 8=> n chia hết cho 4=> n chẵn

Vì n chẵn => b^2= 3n+1 lẻ => b^2 chia 8 dư 1

Do đó b^2-a^2 chia hết cho 8 hay n chia hết cho 8(2)

Từ (1) và (2)=> n chia hết cho 40

                 

17 tháng 8 2020

a) \(5x^2-2x\left(3x+\frac{3}{2}\right)=-x^2-3x=-x\left(x+3\right)=-3\left(3+3\right)=-18\)

b) \(3x\left(x-4y\right)-\frac{12}{5}y\left(y-5x\right)=3x^2-\frac{12}{5}y^2=3\left(x^2-\frac{4}{5}y^2\right)\)

\(=3\left(4^2-\frac{4}{5}.5^2\right)=3.\left(-4\right)=-12\)

c) \(\left(x-2\right)^2-\left(x+7\right)\left(x-7\right)=x^2-4x+4-x^2+49=-4x+53=-4.3+53=41\)

d) \(x^2+12x+36=\left(x+6\right)^2=\left(64+6\right)^2=70^2=4900\)

e) \(\left(x-3\right)^2-\left(x-4\right)\left(x+4\right)=x^2-6x+9-x^2+16=-6x+25=-6\left(-1\right)+25\)

= 31

f) \(\left(3x+2y\right)^2-4y\left(3x+y\right)=9x^2+12xy+4y^2-12xy-4y^2=9x^2=9\left(-\frac{1}{3}\right)^2=1\)

17 tháng 8 2020

a, \(5x^2-2x\left(3x+\frac{3}{2}\right)=-x^2-3x\)

Thay x = 3 vào biểu thức trên ta cs : \(-3^2-3.3=-9-9=-18\)

b, \(3x\left(x-4y\right)-\frac{12}{5}y\left(y-5x\right)=3x^2-\frac{12}{5}y^2\)

Thay x = 4 ; y = 5 vào biểu thức trên ta có : \(3.4^2-\frac{12}{5}.5^2=-12\)

25 tháng 7 2020

a) y(x2-y2)(x2+y2)-y(x4-y4)=y[(x2)2-(y2)2] - y(x4-y4)=y(x4-y4)-y(x4-y4)=0

vậy giá trị biểu thức không phụ thuộc vào biến (đpcm)

b) \(\left(\frac{1}{3}+2x\right)\left(4x^2-\frac{2}{3}x+\frac{1}{9}\right)-\left(8x^3-\frac{1}{27}\right)\)

\(=\left[\left(2x\right)^3+\left(\frac{1}{3}\right)^3\right]-\left(8x^3-\frac{1}{27}\right)=8x^3+\frac{1}{27}-8x^3+\frac{1}{27}=\frac{1}{54}\)

vậy giá trị biểu thức không phụ thuộc vào biến (đpcm)

25 tháng 7 2020

c) (x - 1)^3 - (x - 1)(x^2 + x + 1) - 3(1 - x)x

= (x - 1)(x^2 + x + 1) - (x - 1)(x^2 + x + 1) - 3x(1 - x)

= x^3 - 3x^2 + 3x - 1 - x^3 + 1 - 3x + 3x^2

= 0 (đpcm)

1 tháng 12 2019

1. Ta có:

\(\frac{1}{x}+\frac{1}{x\left(x+1\right)}+\frac{1}{\left(x+1\right)\left(x+2\right)}+...+\frac{1}{\left(x+2013\right)\left(x+2014\right)}\)

\(=\frac{1}{x}+\frac{1}{x}-\frac{1}{x+1}+\frac{1}{x+1}-\frac{1}{x+2}+...+\frac{1}{x+2013}-\frac{1}{x+2014}\)

\(=\frac{2}{x}-\frac{1}{x+2014}\)

\(=\frac{2\left(x+2014\right)}{x\left(x+2014\right)}-\frac{x}{x\left(x+2014\right)}\)

\(=\frac{2x+4028-x}{x\left(x+2014\right)}=\frac{x+4028}{x\left(x+2014\right)}\)

1 tháng 12 2019

2a) ĐKXĐ: x \(\ne\)1 và x \(\ne\)-1

b) Ta có: A = \(\frac{x^2-2x+1}{x-1}+\frac{x^2+2x+1}{x+1}-3\)

A = \(\frac{\left(x-1\right)^2}{x-1}+\frac{\left(x+1\right)^2}{x+1}-3\)

A = \(x-1+x+1-3\)

A = \(2x-3\)

c) Với x = 3 => A = 2.3 - 3 = 3

c) Ta có: A = -2

=> 2x - 3 = -2

=> 2x = -2 + 3 = 1

=> x= 1/2

3 tháng 12 2016

chịch chịch chịch

27 tháng 12 2018

\(3,\frac{2}{xy}:\left(\frac{1}{x}-\frac{1}{y}\right)^2-\frac{x^2+y^2}{\left(x-y\right)^2}\)

\(=\frac{2}{xy}:\left[\left(\frac{1}{x}\right)^2-2.\frac{1}{x}.\frac{1}{y}+\left(\frac{1}{y}\right)^2\right]-\frac{x^2+y^2}{\left(x-y\right)^2}\)

\(=\frac{2}{xy}:\left[\frac{1}{x^2}-\frac{2}{xy}+\frac{1}{y^2}\right]-\frac{x^2+y^2}{x^2-2xy+y^2}\)

\(=\frac{2}{xy}:\left[\frac{y^2-2.xy+x^2}{x^2y^2}\right]-\frac{x^2+y^2}{\left(x-y\right)^2}\)

\(=\frac{2}{xy}.\frac{x^2y^2}{x^2-2xy+y^2}-\frac{x^2+y^2}{x^2-2xy+y^2}\)

\(=\frac{2xy}{x^2-2xy+y^2}+\frac{-x^2-y^2}{x^2-2xy-y^2}\)

\(=\frac{2xy-x^2-y^2}{x^2-2xy+y^2}=\frac{-\left(x^2-2xy+y^2\right)}{x^2-2xy+y^2}=-1\)

28 tháng 12 2018

\(\frac{2011^3+11^3}{2011^3+2000^3}\)

\(=\frac{\left(2011+11\right)\left(2011^2-2011.11+11^2\right)}{\left(2011+2000\right)\left(2011^2-2011.2000+2000^2\right)}\)

\(=\frac{\left(2011+11\right)\left[2011^2-11\left(2011-11\right)\right]}{\left(2011+2000\right)\left[2011^2-2000\left(2011-2000\right)\right]}\)

\(=\frac{\left(2011+11\right)\left(2011^2-11.2000\right)}{\left(2011+2000\right)\left(2011^2-2000.11\right)}\)

\(=\frac{2011+11}{2011+2000}\left(2011^2-11.2000\ne0\right)\)

                                          đpcm