\(\dfrac{x+2}{2x-4}\) - \(\dfrac{x-2}{2x+4}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 12 2017

a, Rút gọn Biểu thức:

A=\(\left(\dfrac{x+2}{2x-4}-\dfrac{x-2}{2x+4}\right):\dfrac{2x}{x2+2x}\)

= \(\left(\dfrac{x+2}{2x-4}+\dfrac{-x-2}{2x+4}\right):\dfrac{2x}{x2+2x}\)

= \(\left(\dfrac{x+2+-x-2}{2x-4+2x+4}\right):\dfrac{2x}{x2+2x}\)

= 0 \(:\dfrac{2x}{x2+2x}\)

b, \(\left(\dfrac{x+2}{2x-4}-\dfrac{x-2}{2x+4}\right):\dfrac{2x}{x2+2x}\)

Thay tất cả x= -4

=> \(\left(\dfrac{-4+2}{2-4-4}-\dfrac{-4-2}{2-4+4}\right):\dfrac{2.-4}{-4.2+2.-4}\)

= -16 : \(\dfrac{1}{3}\)

= -18

26 tháng 12 2017

Hỏi đáp Toán

25 tháng 2 2019

Phân thức đại số

26 tháng 2 2023

tui dở toán nhw chắc bn đúng á.(Đúng chuẩn nhân vật có chỉ số IQ cao top 10 trong conan và magic kaito:)))

27 tháng 11 2018

1/ a, \(A=\dfrac{3}{2x+6}-\dfrac{x-6}{2x^2+6x}\)

\(=\dfrac{3}{2\left(x+3\right)}-\dfrac{x-6}{2x\left(x+3\right)}\)

\(=\dfrac{3x-x+6}{2x\left(x+3\right)}\)

\(=\dfrac{2x+6}{2x\left(x+3\right)}\)

\(=\dfrac{2\left(x+3\right)}{2x\left(x+3\right)}\)

\(=\dfrac{1}{x}\)

Vậy \(A=x\)

b/ Khi \(x=\dfrac{1}{2}\Leftrightarrow A=\dfrac{1}{\dfrac{1}{2}}=2\)

Vậy...

2/a,

\(A=\dfrac{5x+2}{3x^2+2x}+\dfrac{-2}{3x+2}\)

\(=\dfrac{5x+2}{x\left(3x+2\right)}-\dfrac{2x}{x\left(3x+2\right)}\)

\(=\dfrac{5x+2-2x}{x\left(3x+2\right)}\)

\(=\dfrac{3x+2}{x\left(3x+2\right)}\)

\(=\dfrac{1}{x}\)

Vậy....

b/ Với \(x=\dfrac{1}{3}\Leftrightarrow A=\dfrac{1}{\dfrac{1}{3}}=3\)

Vậy..

a: \(Q=\dfrac{x^2-4x+3+2x+6-x^2-3}{\left(x-3\right)\left(x+3\right)}:\dfrac{2x-1-2x-1}{2x+1}\)

\(=\dfrac{-2x+6}{\left(x-3\right)\left(x+3\right)}\cdot\dfrac{2x+1}{-2}\)

\(=\dfrac{2x+1}{x+3}\)

b: ta có: |x+1|=1/2

=>x+1=1/2 hoặc x+1=-1/2

=>x=-3/2

Thay x=-3/2 vào A, ta được:

\(A=\left(2\cdot\dfrac{-3}{2}+1\right):\left(\dfrac{-3}{2}+3\right)=-2:\dfrac{3}{2}=-\dfrac{4}{3}\)

c: Để Q=2 thì 2x+1=2x+6

=>\(x\in\varnothing\)

19 tháng 12 2017

a) điều kiện xát định : \(x\ne\pm1\)

ta có : \(P=\left(\dfrac{x-2}{x^2-1}-\dfrac{x+2}{x^2+2x+1}\right).\left(\dfrac{1-x^2}{2}\right)^2\)

\(P=\left(\dfrac{x-2}{\left(x-1\right)\left(x+1\right)}-\dfrac{x+2}{\left(x+1\right)^2}\right).\dfrac{\left(1-x\right)^2\left(1+x\right)^2}{4}\)

\(P=\dfrac{x-2}{\left(x-1\right)\left(x+1\right)}.\dfrac{\left(x-1\right)^2\left(x+1\right)^2}{4}-\dfrac{x+2}{\left(x+1\right)^2}.\dfrac{\left(x-1\right)^2\left(x+1\right)^2}{4}\)

\(P=\dfrac{\left(x-2\right)\left(x-1\right)\left(x+1\right)}{4}-\dfrac{\left(x+2\right)\left(x-1\right)^2}{4}\)

\(P=\dfrac{\left(x-2\right)\left(x-1\right)\left(x+1\right)-\left(x+2\right)\left(x-1\right)^2}{4}\)

\(P=\dfrac{\left(x-1\right)\left(\left(x-2\right)\left(x+1\right)-\left(x+2\right)\left(x-1\right)\right)}{4}\)

\(P=\dfrac{\left(x-1\right)\left(x^2-x-2-\left(x^2+x-2\right)\right)}{4}\)

\(P=\dfrac{\left(x-1\right)\left(x^2-x-2-x^2-x+2\right)}{4}=\dfrac{\left(x-1\right)\left(-2x\right)}{4}\)

\(P=\dfrac{-2x^2+2x}{4}\)

b) ta có : \(P-4=5x\Leftrightarrow\dfrac{-2x^2+2x}{4}-4=5x\)

\(\Leftrightarrow\dfrac{-2x^2+2x-16}{4}=5x\Leftrightarrow-2x^2+2x-16=20x\)

\(\Leftrightarrow20x-\left(-2x^2+2x-16\right)=0\Leftrightarrow2x^2+18x+16=0\)

\(\Leftrightarrow2x^2+2x+16x+16=0\Leftrightarrow2x\left(x+1\right)+16\left(x+1\right)=0\)

\(\Leftrightarrow\left(2x+16\right)\left(x+1\right)\Leftrightarrow\left[{}\begin{matrix}2x+16=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-8\left(tmđk\right)\\x=-1\left(loại\right)\end{matrix}\right.\)

vậy \(x=-8\) thỏa mãng điều kiện bài toán