\(\alpha,\beta\left(\alpha\ne\beta\right)\in\left(0;\dfrac{\pi}{2}\right)\)và thỏa...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 6 2021

2.

ĐK: \(2x-y\ge0;y\ge0;y-x-1\ge0;y-3x+5\ge0\)

\(\left\{{}\begin{matrix}xy-2y-3=\sqrt{y-x-1}+\sqrt{y-3x+5}\left(1\right)\\\left(1-y\right)\sqrt{2x-y}+2\left(x-1\right)=\left(2x-y-1\right)\sqrt{y}\left(2\right)\end{matrix}\right.\)

\(\left(2\right)\Leftrightarrow\left(1-y\right)\sqrt{2x-y}+y-1+2x-y-1-\left(2x-y-1\right)\sqrt{y}=0\)

\(\Leftrightarrow\left(1-y\right)\left(\sqrt{2x-y}-1\right)+\left(2x-y-1\right)\left(1-\sqrt{y}\right)=0\)

\(\Leftrightarrow\left(1-\sqrt{y}\right)\left(\sqrt{2x-y}-1\right)\left(1+\sqrt{y}\right)+\left(\sqrt{2x-y}-1\right)\left(1-\sqrt{y}\right)\left(\sqrt{2x-y}+1\right)=0\)

\(\Leftrightarrow\left(1-\sqrt{y}\right)\left(\sqrt{2x-y}-1\right)\left(\sqrt{y}+\sqrt{2x-y}+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}y=1\\y=2x-1\end{matrix}\right.\) (Vì \(\sqrt{y}+\sqrt{2x-y}+2>0\))

Nếu \(y=1\), khi đó:

\(\left(1\right)\Leftrightarrow x-5=\sqrt{-x}+\sqrt{-3x+6}\)

Phương trình này vô nghiệm

Nếu \(y=2x-1\), khi đó:

\(\left(1\right)\Leftrightarrow2x^2-5x-1=\sqrt{x-2}+\sqrt{4-x}\) (Điều kiện: \(2\le x\le4\))

\(\Leftrightarrow2x\left(x-3\right)+x-3+1-\sqrt{x-2}+1-\sqrt{4-x}=0\)

\(\Leftrightarrow\left(x-3\right)\left(\dfrac{1}{1+\sqrt{4-x}}-\dfrac{1}{1+\sqrt{x-2}}+2x+1\right)=0\)

Ta thấy: \(1+\sqrt{x-2}\ge1\Rightarrow-\dfrac{1}{1+\sqrt{x-2}}\ge-1\Rightarrow1-\dfrac{1}{1+\sqrt{x-2}}\ge0\)

Lại có: \(\dfrac{1}{1+\sqrt{4-x}}>0\)\(2x>0\)

\(\Rightarrow\dfrac{1}{1+\sqrt{4-x}}-\dfrac{1}{1+\sqrt{x-2}}+2x+1>0\)

Nên phương trình \(\left(1\right)\) tương đương \(x-3=0\Leftrightarrow x=3\Rightarrow y=5\)

Ta thấy \(\left(x;y\right)=\left(3;5\right)\) thỏa mãn điều kiện ban đầu.

Vậy hệ phương trình đã cho có nghiệm \(\left(x;y\right)=\left(3;5\right)\)

30 tháng 7 2019
https://i.imgur.com/qOszLcC.jpg
NV
16 tháng 6 2020

Theo Viet: \(\left\{{}\begin{matrix}tana+tanb=p\\tana.tanb=q\end{matrix}\right.\)

\(\Rightarrow tan\left(a+b\right)=\frac{tana+tanb}{1-tana.tanb}=\frac{p}{1-q}\)

\(\Rightarrow A=cos^2\left(a+b\right)+psin\left(a+b\right)+q.sin^2\left(a+b\right)\)

\(=\frac{1}{cos^2\left(a+b\right)}\left(1+p.\frac{sin\left(a+b\right)}{cos\left(a+b\right)}+q.\frac{sin^2\left(a+b\right)}{cos^2\left(a+b\right)}\right)\)

\(=\left[1+tan^2\left(a+b\right)\right]\left[1+p.tan\left(a+b\right)+q.tan^2\left(a+b\right)\right]\)

\(=\left[1+\frac{p^2}{\left(1-q\right)^2}\right]\left[1+\frac{p^2}{1-q}+\frac{p^2q}{\left(1-q\right)^2}\right]\)

\(=\left[1+\frac{p^2}{\left(1-q\right)^2}\right]\left[1+\frac{p^2}{\left(1-q\right)^2}\right]=\left[1+\frac{p^2}{\left(1-q\right)^2}\right]^2\)