\(\dfrac{2016^{2016}+2}{2016^{2016}-1}\)và B=\(\dfrac{2016^{...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 4 2017

1. Ta có: \(\dfrac{a}{b}>1\Rightarrow\dfrac{a}{b}>\dfrac{a+m}{b+m}\left(m\in Z\right)\)

\(B=\dfrac{2016^{2016}}{2016^{2016}-3}>\dfrac{2016^{2016}+2}{2016^{2016}-3+2}=\dfrac{2016^{2016}+2}{2016^{2016}-1}=A\)

Vậy A > B

2. \(\dfrac{1}{2016.2015}+\dfrac{1}{2015.2014}+\dfrac{1}{2014.2013}+...+\dfrac{1}{1.2}\)

= \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{2014.2015}+\dfrac{1}{2015.2016}\)

= \(\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2015}-\dfrac{1}{2016}\)

= \(1-\dfrac{1}{2016}\)

=\(\dfrac{2015}{2016}\)

2 tháng 4 2017

\(=\dfrac{2}{2}\).(\(\dfrac{1}{3}\)+\(\dfrac{1}{6}\)+\(\dfrac{1}{10}\)+...+\(\dfrac{2}{x.\left(x+1\right)}\))

=2.(\(\dfrac{1}{6}\)+\(\dfrac{1}{12}\)+\(\dfrac{1}{20}\)+...+\(\dfrac{2}{x.\left(x+1\right)}\))

=2.(\(\dfrac{1}{2.3}\)+\(\dfrac{1}{3.4}\)+\(\dfrac{1}{4.5}\)+...+\(\dfrac{1}{x.\left(x+1\right)}\))

=2.[(\(\dfrac{1}{2}\)-\(\dfrac{1}{3}\))+(\(\dfrac{1}{3}\)-\(\dfrac{1}{4}\))+(\(\dfrac{1}{4}\)-\(\dfrac{1}{5}\))+...+(\(\dfrac{1}{x}\)-\(\dfrac{1}{x+1}\))

=2.[\(\dfrac{1}{2}\)-\(\dfrac{1}{3}\)+\(\dfrac{1}{3}\)-\(\dfrac{1}{4}\)+\(\dfrac{1}{4}\)-\(\dfrac{1}{5}\)+...+\(\dfrac{1}{x}\)-\(\dfrac{1}{x+1}\)]

2.[(\(\dfrac{1}{3}\)-\(\dfrac{1}{3}\))+(\(\dfrac{1}{4}\)-\(\dfrac{1}{4}\))+...+(\(\dfrac{1}{x}\)-\(\dfrac{1}{x}\))+(\(\dfrac{1}{2}\)-\(\dfrac{1}{x+1}\))]

=2.[0+0+...+0+(\(\dfrac{1}{2}\)-\(\dfrac{1}{x+1}\))]

=2.(\(\dfrac{1}{2}\)-\(\dfrac{1}{x+1}\))

=2.(\(\dfrac{1.x+1-1.2}{2.x+1}\))

=2.(\(\dfrac{x+1-2}{2x}\))=2.\(\dfrac{x-1}{2x}\)=\(\dfrac{2.\left(x-1\right)}{2x}\)=\(\dfrac{2x-2}{2x}\)

\(\dfrac{2x-2}{2x}\)=\(\dfrac{2014}{2016}\)\(\Rightarrow\)(2x-2).2016=2014.2x=4032x-4032=4028x

\(\Rightarrow\)4032x-4028x=4x=4032\(\Rightarrow\)x=4032:4=1008

2 tháng 4 2017

Đặt A=\(\dfrac{1}{3}+\dfrac{1}{6}+\dfrac{1}{10}+...+\dfrac{2}{x.\left(x+1\right)}\)

\(A=\dfrac{2}{6}+\dfrac{2}{12}+\dfrac{2}{20}+...+\dfrac{2}{x\left(x+1\right)}\)

\(A=\dfrac{2}{2.3}+\dfrac{2}{3.4}+\dfrac{2}{4.5}+...+\dfrac{2}{x.\left(x+1\right)}\)

7 tháng 7 2017

3/ Chu vi hình chữ nhật:

\(\left(\dfrac{1}{4}+\dfrac{3}{10}\right)\cdot2=\dfrac{11}{10}\) (chưa biết đơn vị)

Diện tích hình chữ nhật:

\(\dfrac{1}{4}\cdot\dfrac{3}{10}=\dfrac{11}{20}\) (chưa biết đơn vị)

7 tháng 7 2017

Đơn vị trong ngoặc ghi là đơn vị diện tích nhá!

\(\dfrac{2}{3^2}+\dfrac{2}{4^2}+\dfrac{2}{5^2}+....\dfrac{2}{2016^2}\)

Ta thấy: \(\dfrac{2}{3^2}< \dfrac{2}{2.3}\)
\(\dfrac{2}{4^2}< \dfrac{2}{3.4}\)
...\(\dfrac{2}{2016^2}< \dfrac{2}{2015.2016}\)
Đặt:A=\(\dfrac{2}{3^2}+\dfrac{2}{4^2}+\dfrac{2}{5^2}+...+\dfrac{2}{2016^2}\)
=>\(A< \dfrac{2}{2.3}+\dfrac{2}{3.4}+\dfrac{2}{4.5}+...+\dfrac{2}{2015.2016}\)
=>\(A< \dfrac{2}{2}-\dfrac{2}{3}+\dfrac{2}{3}-\dfrac{2}{4}+\dfrac{2}{4}-\dfrac{2}{5}+...+\dfrac{2}{2015}-\dfrac{2}{2016}\)
=>A<\(\dfrac{2}{2}-\dfrac{2}{2016}\)
=>A<\(\dfrac{1007}{1008}\)\(\dfrac{1007}{1008}\) < 1
=>A<1
Vậy \(\dfrac{2}{3^2}+\dfrac{2}{4^2}+\dfrac{2}{5^2}+...+\dfrac{2}{2016^2}\)<1 (\(đpcm\))

2 tháng 4 2017

\(\dfrac{2}{3^2}+\dfrac{2}{4^2}+...+\dfrac{2}{2016^2}=2\left(\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{2016^2}\right)\)

Ta có: \(\dfrac{1}{3^2}< \dfrac{1}{2.3};\dfrac{1}{4^2}< \dfrac{1}{3.4};...;\dfrac{1}{2016^2}< \dfrac{1}{2015.2016}\)

\(\Rightarrow2\left(\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{2016^2}\right)< 2\left(\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{2015.2016}\right)\)

\(\Rightarrow2\left(\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{2016^2}\right)< 2\left(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2015}-\dfrac{1}{2016}\right)\)

\(\Rightarrow2\left(\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{2016^2}\right)< 2\left(\dfrac{1}{2}-\dfrac{1}{2017}\right)=1-\dfrac{2}{2017}< 1\)

=> đpcm

6 tháng 5 2017

a) \(\dfrac{1}{6},\dfrac{1}{3},\dfrac{1}{2},\dfrac{2}{3}\)

\(\dfrac{1}{6}:\dfrac{1}{2}=\dfrac{1}{3}\) ; \(\dfrac{1}{3}:\dfrac{2}{3}=\dfrac{1}{2}\) nên suy ra \(\dfrac{1}{2}:\dfrac{3}{4}=\dfrac{2}{3}\)

Vậy số để điền vào chỗ trống là \(\dfrac{2}{3}\).

b) \(\dfrac{1}{8},\dfrac{5}{24},\dfrac{7}{24},\dfrac{3}{8}\)

\(\dfrac{1}{8}:\dfrac{3}{5}=\dfrac{5}{24}\) ; \(\dfrac{5}{24}:\dfrac{5}{7}=\dfrac{7}{24}\) nên suy ra \(\dfrac{7}{24}:\dfrac{7}{9}=\dfrac{3}{8}\)

Vậy số để điền vào chỗ trống là \(\dfrac{3}{8}\).

c) \(\dfrac{1}{5},\dfrac{1}{4},\dfrac{3}{10},\dfrac{7}{20}\)

\(\dfrac{1}{5}:\dfrac{4}{5}=\dfrac{1}{4}\) ; \(\dfrac{1}{4}:\dfrac{5}{6}=\dfrac{3}{10}\) nên suy ra \(\dfrac{3}{10}:\dfrac{6}{7}=\dfrac{7}{20}\)

Vậy số để điền vào chỗ trống là \(\dfrac{7}{20}\).

6 tháng 5 2017

ủa đề bài này là gì vậy

27 tháng 6 2017

a) Nếu:

\(\dfrac{a}{b}< 1\Rightarrow\dfrac{a+m}{b+m}< 1\left(m\in Z\right)\)

\(\Rightarrow B=\dfrac{5^{12}+2}{5^{13}+2}< 1\)

\(B< \dfrac{5^{12}+2+48}{5^{13}+2+48}\Rightarrow B< \dfrac{5^{12}+50}{5^{13}+50}\Rightarrow B< \dfrac{5^2\left(5^{10}+2\right)}{5^2\left(5^{11}+2\right)}\Rightarrow B< \dfrac{5^{10}+2}{5^{11}+2}=A\)\(B< A\)

27 tháng 6 2017

bạn ơi thế còn phần b thì sao? Mong bạn có câu trả lời sớm tớ cảm ơn bạn nhiều lắm

17 tháng 8 2017

a) \(S=\dfrac{2+2^2+2^3+...+2^{2017}}{1-2^{2017}}\)

\(\Rightarrow2S=\dfrac{2\left(2+2^2+2^3+...+2^{2017}\right)}{1-2^{2017}}\)

\(2S=\dfrac{2^2+2^3+2^4+...+2^{2018}}{1-2^{2017}}\)

\(\Rightarrow2S-S=S=\dfrac{2^2+2^3+2^4+...+2^{2018}}{1-2^{2017}}-\dfrac{2+2^2+2^3+...+2^{2017}}{1-2^{2017}}\)

\(S=\dfrac{\left(2^2+2^3+2^4+...+2^{2018}\right)-\left(2+2^2+2^3+...+2^{2017}\right)}{1-2^{2017}}\)

\(S=\dfrac{2^{2018}-2}{1-2^{2017}}=\dfrac{-2\left(1-2^{2017}\right)}{1-2^{2017}}=-2\) vậy \(S=-2\)