K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 4 2017

Câu 2/ Gọi ước chung lớn nhất của a,c là q thì ta có:

a = qa1; c = qc1 (a1, c1 nguyên tố cùng nhau).

Thay vào điều kiện ta được:

 qa1b = qc1d

\(\Leftrightarrow\)a1b = c1d

\(\Rightarrow\)  d\(⋮\)a1

\(\Rightarrow\)d = d1a1

Thế ngược lại ta được: b = d1c1

Từ đây ta có:

A = an + bn + cn + dn = (qa1)n + (qc1)n + (d1a1)n + (d1c1)n

= (a​1 n + c1 n)(q n + d1 n)

Vậy A là hợp số

13 tháng 4 2017

\(D=\frac{4}{1^2}+\frac{4}{3^2}+....+\frac{4}{2015^2}\)

\(D=4+2.\left(\frac{2}{3.3}+\frac{2}{5.5}+....+\frac{2}{2015.2015}\right)\)

\(D< 4+2.\left(\frac{2}{1.3}+\frac{2}{3.5}+.....+\frac{2}{2013.2015}\right)\)

\(D< 4+2.\left(1-\frac{1}{2015}\right)\)

\(D< 6\)

mink chỉ làm được vậy thôi bạn ạ, sorry

4,Tìm a, b N, biết:

a,10a+168=b2

b,100a+63=b2

c,2a+124=5b

d,2a+80=3b

 Giải:

a) xét \(a=0\)

\(\Rightarrow10^a+168=1+168=169=13^2\)

\(\Rightarrow\hept{\begin{cases}a=0\\b=13\end{cases}}\)

xét \(a\ne0\)

=>10a có tận cùng bằng 0

Mà 10a+168 có tận cùng bằng 8 không phải số chính phương ( các số chính phương chỉ có thể tận cùng là:0;1;4;5;6;9  )

=>không có b

vậy \(\hept{\begin{cases}a=0\\b=13\end{cases}}\)

b)Chứng minh tương tự câu a)

c) \(5^b\)là số lẻ với b là số tự nhiên và tận cùng là 5

\(\Rightarrow2^a+124\)cũng là số lẻ và tận cùng là 5

Mà \(2^a+124\) là số lẻ khi và chỉ khi a=0

ta có :

2^0 + 124 = 5^b

=> 125 = 5^b

=> 5^3 = 5^b

=> b = 3

Vậy a = 0 ; b =3

d)Chứng minh tương tự như 2 câu mẫu trên

3,Cho B=34n+3+2013

Chứng minh rằng B10 với mọi nN

Giải:

Ta có : 

34n+3+2013

=(34)n+27+2013

=81n+2040

Phần sau dễ rồi ,mk nghĩ bạn có thể giải đc

Ngu cũng được chẳng cần Nguyễn Minh chia sẻ. 

Không giúp gì được cho người ta thì đừng có vào mục trả lời,

xỏ xiên người ta nữa.

29 tháng 1 2018

Mình hơi bận nên chỉ cách làm thôi nhé, moong bạn hiểu)

Bài 1:

=(1 - 2) + (3 - 4) + (5 - 6)+ ...+(801 - 802)+(803 - 804)

= (-1) + (-1) + (-1) + ... + (-1)

Bạn đi tìm số cặp sẽ ra số các số hạng -1 nên nhân -1 với số cặp sẽ ra thôi! (-1). số số (-1)

Bài 2:

a) -7 là bội của x + 8 

=> x+8 thuộc B(-7) = {1; 2; -1; -2}

(Lập bảng)(Chết, vẽ thiếu!)

x + 8             1    |       2              1            -2
   

Tương tự các câu sau.

C) x2 = x .x

Ta có: x . x . 3x + 4 = 5x + 4

(Còn đâu thì chịu, mình chỉ giúp đc có vận thôi, thông cảm nhé!)

20 tháng 7 2019

1) Ta có: \(10\equiv1\left(mod3\right)\Rightarrow10^n\equiv1\left(mod3\right)\Rightarrow10^n-1⋮3\)

Ta có: \(\left(10^n+1\right)\left(10^n+2\right)=\left(10^n+1\right)\left(10^n-1+3\right)\)

Do \(\hept{\begin{cases}10^n-1⋮3\\3⋮3\end{cases}}\Rightarrow\left(10^n+1\right)\left(10^n+2\right)⋮3\)

2) Ta có: Xét: \(1!+2!+3!+4!+5!+...+n!\)

Xét: \(n\ge5\) thì: \(1!+2!+3!+4!+5!+...+n!=33+5!+...+n!\)

Ta có: \(5!=1.2.3.4.5=\left(2.5\right).1.3.4\) có tận cùng bằng 0

Tương tự,ta suy ra được với n>=5 thì n! có tận cùng bằng 5 (do có chứa 2 thừa số 2 và 5)

\(\Rightarrow33+5!+...+n!\) tận cùng bằng 3 (loại vì scp ko có tận cùng bằng 3)

Như vậy, \(n< 5\)

Với \(n=1;1!+2!+3!+...+n!=1\left(TM\right)\)

Với \(n=2;1!+2!=5\left(KTM\right)\)

Với \(n=3;1!+2!+3!=9\left(TM\right)\)

Với \(n=4;1!+2!+3!+4!=33\left(KTM\right)\)

Vậy n bằng 1 hoặc 3

3) Ta có: \(a;b;c;d\in N\Rightarrow a+b+c+d>2\)

Giả sử \(a+b+c+d\) là số nguyên tố. Ta có: \(a+b+c+d=p\)(p nguyên tố) 

\(\Rightarrow a=p-b-c-d\Leftrightarrow ab=pb-b^2-bc-bd\)

\(\Leftrightarrow ab+b^2+bc+bd=pb\)

\(\Leftrightarrow cd+b^2+bc+bd=pb\Rightarrow\left(b+c\right)\left(b+d\right)=pb⋮p\)

Do p nguyên tố \(\Rightarrow\orbr{\begin{cases}b+c⋮p\\b+d⋮p\end{cases}}\Rightarrow\orbr{\begin{cases}b+c>p\\b+d>p\end{cases}}\Rightarrow\orbr{\begin{cases}b+c>a+b+c+d\\b+d>a+b+c+d\end{cases}}\left(vo-ly\right)\)

Vậy a+b+c+d là hợp số 

Ta xét hiệu: \(a^n+b^n+c^n+d^n-a-b-c-d⋮2\)(Fermat nhỏ)

\(\Rightarrow a^n+b^n+c^n+d^n⋮2;a^n+b^n+c^n+d^n>2\Rightarrow a^n+b^n+c^n+d^n\) là hợp số (đpcm) 

22 tháng 7 2019

Girl

Thank you =))

16 tháng 11 2015

a+1+b+1+c+1+d+1+e+1=b+c+d+e+f 

=> a+5 =f =e+1 =d+2=c+3=b+4

có mũ 2 = không SD lớp 8

= chịu

12 tháng 1 2018

         \(n^2-2n-22\) \(⋮\)\(n+3\)

\(\Leftrightarrow\)\(\left(n-5\right)\left(n+3\right)-7\)  \(⋮\)\(n+3\)

Ta thấy:    \(\left(n-5\right)\left(n+3\right)\)\(⋮\)\(n+3\)

nên    \(7\)\(⋮\)\(n+3\)

hay    \(n+3\) \(\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)

Ta lập bảng sau:

\(n+3\)      \(-7\)         \(-1\)              \(1\)             \(7\)

\(n\)            \(-10\)         \(-4\)           \(-2\)            \(4\)

Vậy....

8 tháng 4 2019

a + b = c + d

=> (a + b)2 = (c + d)2 

=> a2 + 2ab + b2 = c2 + 2cd + d2 

=> 2ab = 2cd

=> a2 - 2ab + b2 = c2 - 2cd + d2 

=> (a - b)2 = (c - d)2

Ta xét 2 trường hợp: 

TH1: a - b = c - d

Mà: a + b = c + d

=> a - b + a + b = c + d + c - d

=> 2a = 2c => a = c => b = d => a2016 + b2016 = c2016 + d2016 (*)

TH2: a - b = d - c

Mà: a + b = c + d

=> a - b + a + b = c + d + d - c

=> 2a = 2d => a = b => b = c => a2016 + b2016 = c2016 + d2016 (**)

Từ (*) và (**) => đpcm

8 tháng 4 2019

a + b = c + d

=> (a + b)2 = (c + d)2 

=> a2 + 2ab + b2 = c2 + 2cd + d2 

=> 2ab = 2cd

=> a2 - 2ab + b2 = c2 - 2cd + d2 

=> (a - b)2 = (c - d)2

Ta xét 2 trường hợp: 

TH1: a - b = c - d

Mà: a + b = c + d

=> a - b + a + b = c + d + c - d

=> 2a = 2c => a = c => b = d => a2016 + b2016 = c2016 + d2016 (*)

TH2: a - b = d - c

Mà: a + b = c + d

=> a - b + a + b = c + d + d - c

=> 2a = 2d => a = b => b = c => a2016 + b2016 = c2016 + d2016 (**)

Từ (*) và (**) => đpcm

2 tháng 2 2018

ab-ac+bc-c2

= a(b-c) +c(b-c)

=(a+c)(b-c)=-1

=>  a+c = -(b-c)

=> a+c = -b+c

=> a=-b => là 2 số đối nhau