K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 4 2019

Bài 1a) 

\(P\left(x\right)=x^{2018}+4x^2+10\)

VÌ \(x^{2018}\ge0\forall x;4x^2\ge0\forall x\)

\(\Rightarrow x^{2018}+4x^2+10\ge10\forall x\)

Hay \(P\left(x\right)\ge10\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow x=0\)

11 tháng 4 2019

Bài 1b)

\(M\left(x\right)=x^2+x+1\)

\(M\left(x\right)=x^2+2\cdot x\cdot\frac{1}{2}+\frac{1}{4}+\frac{3}{4}\)

\(M\left(x\right)=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow x=\frac{-1}{2}\)

2 tháng 7 2016

\(B=\frac{6n+7}{2n+3}=\frac{3\left(2n+3\right)-2}{2n+3}=\frac{3\left(2n+3\right)}{2n+3}-\frac{2}{2n+3}=3-\frac{2}{2n+3}\in Z\)

=>2 chia hết 2n+3 

=>2n+3 thuộc Ư(2)={1;-1;2;-2}

=>2n thuộc {-2;-4} (vì n nguyên)

=>n thuộc {-1;-2}

Để B đạt GTNN 

=>2n+3 đạt GTLN và 6n+7 đạt GTNN

Với n=-2 =>Bmin=\(\frac{6\cdot\left(-2\right)+7}{2\cdot\left(-1\right)+3}=\frac{-5}{-1}=5\)

  • n=-1 =>Bmin=\(\frac{6\cdot\left(-1\right)+7}{2\cdot\left(-1\right)+3}=\frac{1}{1}=1\)

Vì 5>1 =>Bmin=1 xảy ra khi n=-1

2 tháng 7 2016

a) \(B=\frac{6n+7}{2n+3}=\frac{6n+9-2}{2n+3}=\frac{3\left(2n+3\right)-2}{2n+3}=3-\frac{2}{2n+3}\)mà để \(B\in Z\)thì \(\frac{2}{2n+3}\in Z\)

=> 2n + 3 = -2;-1;1;2 => 2n = -5 ; -4 ; -2 ; -1 => n = -2 ; -1 vì nguyên

b)Xét \(B=3-\frac{2}{2n+3}\)vừa phân tích ở câu a , ta thấy B nhỏ nhất khi \(\frac{2}{2n+3}\) lớn nhất 

=> 2n + 3 dương , nhỏ nhất nên chỉ có thể bằng 1 => 2n = -2 => n = 1

7 tháng 12 2018

5. Ta có b = 1 – a, do đó M = a\(^3\) + (1 – a)\(^3\) = 3(a – 1⁄2)2 + 1⁄4 ≥ 1⁄4 . Dấu “=” xảy ra khi a = 1⁄2 .
Vậy min M = 1⁄4 => a = b = 1⁄2 .
6. Đặt a = 1 + x => b 3 = 2 – a\(^3\) = 2 – (1 + x)\(^3\) = 1 – 3x – 3x\(^2\)– x\(^3\) ≤ 1 – 3x + 3x\(^2\)– x\(^3\) = (1 – x)\(^3\)
Suy ra : b ≤ 1 – x. Ta lại có a = 1 + x, nên : a + b ≤ 1 + x + 1 – x = 2.
Với a = 1, b = 1 thì a\(^3\) + b\(^3\) = 2 và a + b = 2. Vậy max N = 2 khi a = b = 1.
7. Hiệu của vế trái và vế phải bằng (a – b)\(^2\)(a + b).

Để\(A\inℤ\)

thì\(n+2⋮n-3\Leftrightarrow\left(n-3\right)+5⋮n-3\Rightarrow5⋮n-3\)

\(\Leftrightarrow n-3\inƯ\left(5\right)\Leftrightarrow n\in\left\{4;8;2;-2\right\}\)

23 tháng 7 2019

a, Ta có : \(A=\frac{n+2}{n-3}=\frac{n-3+5}{n-3}=1+\frac{5}{n-3}\)

Để A có giá trị nguyên thì : \(\frac{5}{n-3}\)phải có giá trị nguyên.

Lại có : \(\frac{5}{n-3}\)có giá trị nguyên khi và chỉ khi : \(5:n-3\)

\(\Rightarrow n-3\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\)

\(\Rightarrow n\in\left\{-2;2;4;8\right\}\)

Vậy:............

b, Để A đạt giá trị lớn nhất thì : \(1+\frac{5}{n-3}\)đạt giá trị lớn nhất

\(1+\frac{5}{n-3}\)lớn nhất khi và chỉ khi : \(\frac{5}{n-3}\)lớn nhất

Khi đó : \(n-3\)nhỏ nhất 

Do : \(n-3\ne0\Rightarrow n-3=1\Rightarrow n=4\)

Vậy :......