\(\sqrt{2a+b}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
26 tháng 8 2020

1.

\(T=1.\sqrt{2a+b}+1.\sqrt{2b+c}+1.\sqrt{2c+a}\)

\(T\le\frac{1}{2}\left(1+2a+b\right)+\frac{1}{2}\left(1+2b+c\right)+\frac{1}{2}\left(1+2c+a\right)\)

\(T\le\frac{1}{2}\left[3\left(a+b+c\right)+3\right]=3\)

\(T_{max}=3\) khi \(a=b=c=\frac{1}{3}\)

2.

\(\Leftrightarrow x+y+z=2\sqrt{x+1}+2\sqrt{y-3}+2\sqrt{z-1}\)

\(\Leftrightarrow\left(x+1-2\sqrt{x-1}+1\right)+\left(y-3-2\sqrt{y-3}+1\right)+\left(z-1-2\sqrt{z-1}+1\right)=0\)

\(\Leftrightarrow\left(\sqrt{x+1}-1\right)^2+\left(\sqrt{y-3}-1\right)^2+\left(\sqrt{z-1}-1\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x+1}=1\\\sqrt{y-3}=1\\\sqrt{z-1}=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=4\\z=2\end{matrix}\right.\)

26 tháng 8 2020

\(\sqrt{z-1}\)nha các bn

3 tháng 3 2020

Nè bạn :) 

Ta có : \(2ab+2ac\ge4a\sqrt{bc}\) (Cauchy_)

\(\Rightarrow a^2+2ab+2ac+4bc\ge a^2+4a\sqrt{bc}+4bc\)

\(\Rightarrow a^2+2ab+2ac+4bc\ge\left(a+2\sqrt{bc}\right)^2\)

\(\Rightarrow\sqrt{\left(a+2b\right)\left(a+2c\right)}\ge a+2\sqrt{bc}\)\(\left(1\right)\)

Tương tự : \(\sqrt{\left(b+2a\right)\left(b+2c\right)}\ge b+2\sqrt{ac}\)\(\left(2\right)\)

\(\sqrt{\left(c+2a\right)\left(c+2b\right)}\ge c+2\sqrt{ab}\)\(\left(3\right)\)

Từ \(\left(1\right);\left(2\right);\left(3\right)\)\(\Rightarrow\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2\ge3\)

\(\Rightarrow\sqrt{a}+\sqrt{b}+\sqrt{c}\ge\sqrt{3}\)

Đẳng thức xảy ra khi \(a=b=c=\frac{1}{\sqrt{3}}\)

Thay vào biểu thức M ta được M = \(\frac{\sqrt{3}}{3}\)

14 tháng 12 2019

có cả mấy bất đẳng thức đó hả

bn viết công thức tổng quát ra cho mk vs

mk thanks

20 tháng 5 2021

Các bạn chuyển \(1c^2\) thành \(2c^2\) cho mk nha

19 tháng 5 2018

Ez to prove \(\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)

\(\Leftrightarrow\frac{\left(a+b+c\right)^2}{3}\ge ab+bc+ca\)

\(\Leftrightarrow\frac{6054}{3}\ge ab+bc+ca\Leftrightarrow ab+ca+bc\le2018\)

Khi đó: \(\frac{2a}{\sqrt{a^2+2018}}\le\frac{2a}{\sqrt{a^2+ab+bc+ca}}=\frac{2a}{\sqrt{\left(a+b\right)\left(a+c\right)}}\le\frac{a}{a+b}+\frac{a}{a+c}\)

Tương tự cho 2 BĐT còn lại rồi cộng theo vế:

\(P\le\frac{a+b}{a+b}+\frac{b+c}{b+c}+\frac{c+a}{c+a}=3\)

23 tháng 3 2021

\(Q=\sqrt{2a+bc}+\sqrt{2b+ca}+\sqrt{2c+ab}\)

\(\Rightarrow Q^2=\left(\sqrt{2a+bc}+\sqrt{2b+ca}+\sqrt{2c+ab}\right)^2\)

Vì \(a,b,c>0\)nên áp dụng bất đẳng thức Bunhiacopxki, ta được:

\(\left(\sqrt{2a+bc}+\sqrt{2b+ca}+\sqrt{2c+ab}\right)^2\)\(\le\left(1^2+1^2+1^2\right)\left[\left(\sqrt{2a+bc}\right)^2+\left(\sqrt{2b+ca}\right)^2+\left(\sqrt{2c+ab}\right)^2\right]\)

\(\Leftrightarrow Q^2\le3\left(2a+bc+2b+ca+2c+ab\right)\)

\(\Leftrightarrow Q^2\le3\left[2\left(a+b+c\right)+\left(ab+bc+ca\right)\right]\)

\(\Leftrightarrow Q^2\le6\left(a+b+c\right)+3\left(ab+bc+ca\right)\)

\(\Leftrightarrow Q^2\le6.2+3\left(ab+bc+ca\right)\)(vì \(a+b+c=2\))

\(\Leftrightarrow Q^2\le12+3\left(ab+bc+ca\right)\left(1\right)\)

\(a,b,c>0\)nên áp dụng bất dẳng thức Cô-si cho 2 số dương, ta được:

\(a^2+b^2\ge2ab\left(2\right)\);

\(b^2+c^2\ge2bc\left(3\right)\)

\(c^2+a^2\ge2ca\left(4\right)\)

Từ \(\left(2\right),\left(3\right),\left(4\right)\), ta được:

\(a^2+b^2+b^2+c^2+c^2+a^2\ge2ab+2bc+2ca\)

\(\Leftrightarrow2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ca\right)\)

\(\Leftrightarrow a^2+b^2+c^2\ge ab+bc+ca\)

\(\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ca\ge\)\(ab+bc+ca+2ab+2bc+2ca\)

\(\Leftrightarrow\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)

\(\Leftrightarrow2^2\ge3\left(ab+bc+ca\right)\)(vì \(a+b+c=2\))

\(\Leftrightarrow4\ge3\left(ab+bc+ca\right)\)

\(\Leftrightarrow4+12\ge3\left(ab+bc+ca\right)+12\)

\(\Leftrightarrow3\left(ab+bc+ca\right)+12\le16\left(5\right)\)

Từ (1) và (5), ta được:

\(Q^2\le16\)

\(\Leftrightarrow Q\le4\)

Dấu bằng xảy ra.

\(\Leftrightarrow\hept{\begin{cases}a=b=c>0\\a+b+c=2\end{cases}}\Leftrightarrow a=b=c=\frac{2}{3}\)

Vậy \(maxQ=4\Leftrightarrow a=b=c=\frac{2}{3}\)

25 tháng 10 2020

Bài 4: Áp dụng bất đẳng thức AM - GM, ta có: \(P=\text{​​}\Sigma_{cyc}a\sqrt{b^3+1}=\Sigma_{cyc}a\sqrt{\left(b+1\right)\left(b^2-b+1\right)}\le\Sigma_{cyc}a.\frac{\left(b+1\right)+\left(b^2-b+1\right)}{2}=\Sigma_{cyc}\frac{ab^2+2a}{2}=\frac{1}{2}\left(ab^2+bc^2+ca^2\right)+3\)Giả sử b là số nằm giữa a và c thì \(\left(b-a\right)\left(b-c\right)\le0\Rightarrow b^2+ac\le ab+bc\)\(\Leftrightarrow ab^2+bc^2+ca^2\le a^2b+abc+bc^2\le a^2b+2abc+bc^2=b\left(a+c\right)^2=b\left(3-b\right)^2\)

Ta sẽ chứng minh: \(b\left(3-b\right)^2\le4\)(*)

Thật vậy: (*)\(\Leftrightarrow\left(b-4\right)\left(b-1\right)^2\le0\)(đúng với mọi \(b\in[0;3]\))

Từ đó suy ra \(\frac{1}{2}\left(ab^2+bc^2+ca^2\right)+3\le\frac{1}{2}.4+3=5\)

Đẳng thức xảy ra khi a = 2; b = 1; c = 0 và các hoán vị

26 tháng 10 2020

Bài 1: Đặt \(a=xc,b=yc\left(x,y>0\right)\)thì điều kiện giả thiết trở thành \(\left(x+1\right)\left(y+1\right)=4\)

Khi đó  \(P=\frac{x}{y+3}+\frac{y}{x+3}+\frac{xy}{x+y}=\frac{x^2+y^2+3\left(x+y\right)}{xy+3\left(x+y\right)+9}+\frac{xy}{x+y}\)\(=\frac{\left(x+y\right)^2+3\left(x+y\right)-2xy}{xy+3\left(x+y\right)+9}+\frac{xy}{x+y}\)

Có: \(\left(x+1\right)\left(y+1\right)=4\Rightarrow xy=3-\left(x+y\right)\)

Đặt \(t=x+y\left(0< t< 3\right)\Rightarrow xy=3-t\le\frac{\left(x+y\right)^2}{4}=\frac{t^2}{4}\Rightarrow t\ge2\)(do t > 0)

Lúc đó \(P=\frac{t^2+3t-2\left(3-t\right)}{3-t+3t+9}+\frac{3-t}{t}=\frac{t}{2}+\frac{3}{t}-\frac{3}{2}\ge2\sqrt{\frac{t}{2}.\frac{3}{t}}-\frac{3}{2}=\sqrt{6}-\frac{3}{2}\)với \(2\le t< 3\)

Vậy \(MinP=\sqrt{6}-\frac{3}{2}\)đạt được khi \(t=\sqrt{6}\)hay (x; y) là nghiệm của hệ \(\hept{\begin{cases}x+y=\sqrt{6}\\xy=3-\sqrt{6}\end{cases}}\)

Ta lại có \(P=\frac{t^2-3t+6}{2t}=\frac{\left(t-2\right)\left(t-3\right)}{2t}+1\le1\)(do \(2\le t< 3\))

Vậy \(MaxP=1\)đạt được khi t = 2 hay x = y = 1