\(\sqrt{3}-\sqrt{2};2\sqrt{2}+\sqrt{3}\)

2. Chm

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 10 2019

1. Ta có: \(x+y+z=\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\)

\(\Rightarrow\left(x+y+z\right)^2=\left(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\right)^2\)

\(\Leftrightarrow x^2+y^2+z^2+2xy+2yz+2xz=xy+yz+zx+2y\sqrt{xz}+2z\sqrt{xy}+2x\sqrt{yz}\)

\(\Leftrightarrow x^2+y^2+z^2+xy+yz+zx-2y\sqrt{xz}-2z\sqrt{xy}-2x\sqrt{yz}=0\)

\(\Leftrightarrow\left(x-\sqrt{yz}\right)^2+\left(y-\sqrt{xz}\right)^2+\left(z-\sqrt{xy}\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\sqrt{yz}\\y=\sqrt{xz}\\z=\sqrt{xy}\end{matrix}\right.\)

\(\Rightarrow x^2+y^2+z^2-xy-yz-zx=0\)

\(\Leftrightarrow2x^2+2y^2+2z^2-2xy-2yz-2zx=0\)

\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\Rightarrow x=y=z\)

AH
Akai Haruma
Giáo viên
26 tháng 10 2019

Bài 1:
\(x+y+z=\sqrt{xy}+\sqrt{yz}+\sqrt{xz}\)

\(\Leftrightarrow x+y+z-\sqrt{xy}-\sqrt{yz}-\sqrt{xz}=0\)

\(\Leftrightarrow 2x+2y+2z-2\sqrt{xy}-2\sqrt{yz}-2\sqrt{xz}=0\)

\(\Leftrightarrow (x+y-2\sqrt{xy})+(y+z-2\sqrt{yz})+(z+x-2\sqrt{xz})=0\)

\(\Leftrightarrow (\sqrt{x}-\sqrt{y})^2+(\sqrt{y}-\sqrt{z})^2+(\sqrt{z}-\sqrt{x})^2=0\)

\( (\sqrt{x}-\sqrt{y})^2;(\sqrt{y}-\sqrt{z})^2;(\sqrt{z}-\sqrt{x})^2\geq 0, \forall x,y,z>0\) nên để tổng của chúng bằng $0$ thì:

\( (\sqrt{x}-\sqrt{y})^2=(\sqrt{y}-\sqrt{z})^2=(\sqrt{z}-\sqrt{x})^2=0\)

\(\Rightarrow x=y=z\) (đpcm)

15 tháng 10 2019

a) \(A=\left(\frac{x+2}{x\sqrt{x}-1}+\frac{\sqrt{x}}{x+\sqrt{x}+1}+\frac{1}{1-\sqrt{x}}\right):\frac{\sqrt{x}-1}{2\sqrt{x}}\)

\(A=\left(\frac{x+2}{\sqrt{x^3}-1}+\frac{\sqrt{x}}{x+\sqrt{x}+1}-\frac{1}{\sqrt{x}-1}\right):\frac{\sqrt{x}-1}{2\sqrt{x}}\)

\(A=\frac{x+2+\sqrt{x}\left(\sqrt{x}-1\right)-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}.\frac{2\sqrt{x}}{\sqrt{x}-1}\)

\(A=\frac{x+2+x-\sqrt{x}-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}.\frac{2\sqrt{x}}{\sqrt{x}-1}\)

\(A=\frac{x-2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}.\frac{2\sqrt{x}}{\sqrt{x}-1}\)

\(A=\frac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}.\frac{2\sqrt{x}}{\sqrt{x}-1}=\frac{2\sqrt{x}}{x+\sqrt{x}+1}\)

15 tháng 10 2019

Ta có: A-\(\frac{2}{3}\)= \(\frac{\sqrt{x}}{x+\sqrt[]{x}+1}-\frac{2}{3}\)=\(\frac{6\sqrt{x}-2x-2\sqrt{x}-2}{3\left(x+\sqrt{x}+1\right)}\)

=\(\frac{-2\left(x-2\sqrt{x}+1\right)}{3\left(x+\sqrt{x}+1\right)}\)=\(\frac{-2}{3}.\frac{\left(\sqrt{x}-1\right)^2}{x+\sqrt{x}+1}\)<0

hay A\(-\frac{2}{3}\)<0

=>A<\(\frac{2}{3}\)

18 tháng 7 2019

\(0< x,y,z< 4\)\(\Rightarrow\)\(\hept{\begin{cases}x\left(x-4\right)< 0\\y\left(y-4\right)< 0\\z\left(z-4\right)< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x^2< 4x\\y^2< 4y\\z^2< 4z\end{cases}\Leftrightarrow}\hept{\begin{cases}x^3>\frac{x^4}{4}\\y^3>\frac{y^4}{4}\\z^3>\frac{z^4}{4}\end{cases}}}\)

\(\sqrt[4]{x^3}+\sqrt[4]{y^3}+\sqrt[4]{z^3}>\sqrt[4]{\frac{x^4}{4}}+\sqrt[4]{\frac{y^4}{4}}+\sqrt[4]{\frac{z^4}{4}}=\frac{x+y+z}{\sqrt{2}}=\frac{4}{\sqrt{2}}=2\sqrt{2}\)

a: \(=\dfrac{2\sqrt{7}+10-2\sqrt{7}+10}{7-25}=\dfrac{-20}{18}=\dfrac{-10}{9}\)

b: \(=\dfrac{7+10\sqrt{7}+25+7-10\sqrt{7}+25}{-18}\)

\(=\dfrac{64}{-18}=\dfrac{-32}{9}\)

27 tháng 1 2017

CÂU 3 : ĐỀ BÀI , SUY RA :

X-1 + X-2 =3 <=> 2X = 6 <=> X =3