Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
2bd=c(b+d)
=>d(a+c)=c(b+d)
=>ad+cd=cb+cd
=>ad=cb
=>a/b=c/d
\(\dfrac{1}{c}=\dfrac{1}{2}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\\ \Rightarrow\dfrac{1}{c}=\dfrac{a+b}{2ab}\\ \Rightarrow ac+bc=2ab\)
Giả sử \(\dfrac{a}{b}=\dfrac{a-c}{c-b}\Rightarrow ac-ab=ab-bc\Rightarrow ac+bc=2ab\left(\text{luôn đúng}\right)\)
Vậy \(\dfrac{a}{b}=\dfrac{a-c}{c-b}\)
\(\dfrac{1}{c}=\dfrac{1}{2}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\)
\(\Leftrightarrow\dfrac{1}{c}=\dfrac{a+b}{2ab}\)
\(\Leftrightarrow2ab=c\left(a+b\right)\)
\(\Leftrightarrow ab+ab=ca+cb\)
\(\Leftrightarrow ab-cb=ca-ab\)
\(\Leftrightarrow b\left(a-c\right)=a\left(c-b\right)\)
\(\Rightarrow\dfrac{a}{b}=\dfrac{a-c}{c-b}\)
cho a*b*c=1
CM \(\frac{a}{1+a+b\cdot a}=\frac{b}{1+b+b\cdot c}=\frac{c}{1+c+c\cdot a}ghicachgiainha\)