Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: \(x^3+3x^2-x-3=\left(x-2\right)\left(x^2+bx+c\right)+a\)
\(\Leftrightarrow x^3-2x^2+5x^2-10x+11x-22+19=\left(x-2\right)\left(x^2+bx+c\right)+a\)
\(\Leftrightarrow\left(x-2\right)\left(x^2+5x+11\right)+19=\left(x-2\right)\left(x^2+bx+c\right)+a\)
=>b=5; c=11; c=19
2: \(4x^3+7x-6=\left(ax+b\right)\left(x^2+x+1\right)+c\)
\(\Leftrightarrow4x^3+4x^2+4x-4x^2-4x-4+7x-2=\left(ax+b\right)\left(x^2+x+1\right)+c\)
\(\Leftrightarrow\left(x^2+x+1\right)\left(4x-4\right)+7x-2=\left(ax+b\right)\left(x^2+x+1\right)+c\)
=>a=4; b=-4; c=7x-2
\(a) x^4 + ax^2 + b \\
= x^4 + 2x^2 + b + ax^2 - 2x^2\\
= (x^2 + 1)^2 - x^2 + x^2(a + b)\\
= (x^2 + x + 1)(x^2 - x + 1) + x^2(a + b) \\
= (x^2 + x + 1)(x^2 - x + 1) + (a + b)(x^2 + x + 1) - (a + b)(x - 1).
\)
Để \(x^4 + ax^2 + b\) chia hết cho \(x^2 + x + 1\) thì số dư bằng 0
\(\Rightarrow\left(a-1\right)\left(b-1\right)=0\\
\Rightarrow a=b=1\)
\(b) ax^3 + bx^2 + 5x - 50\\
= (x^2 + 3x - 10)(cx + d) \\
= ax^3 + bx^2 + 5x - 50\\
= cx^3 + (d + 3c)x^2 + (3d - 10c)x - 10d \\\)
Mà: \(a = c\)
\(b = d + 3c\\
5 = 3d - 10c\\
-50 = -10d\)
Vậy \(a = 1, b = 8\)
\(d)f(x)=ax^3+bx-24\)
Để f(x) chia hết cho (x + 1)(x + 3) thì f(-1)=0 và f(-3) = 0
f(-1)=0 => -a - b - 24 = 0 (*)
f(-3) = 0 => - 27a - 3b - 24 =0 (**)
Từ (*) và (**) ta có hệ phương trình:
\(\left\{{}\begin{matrix}-a-b-24=0\\-27a-3b-24=0\end{matrix}\right.\)
Giải ra ta được a = 2; b = -26
câu 2 là: x^3+4x^2-7x-10 nhà, mk ghi lộn, xl các bn
Câu 2:
\(x^3+4x^2-7x-10\)
\(=x^3+5x^2-x^2-5x-2x-10\)
\(=\left(x+5\right)\left(x^2-x-2\right)\)
\(=\left(x+5\right)\left(x-2\right)\left(x+1\right)\)