Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(Tacó\)
\(13\equiv1\left(mod4\right)\Rightarrow13^n\equiv1\left(mod4\right)\)
\(\Rightarrow\left(13^n+3\right)⋮4\Leftrightarrow13^n\left(13^n+3\right)\left(13^n+4\right)\left(13^n+1\right)⋮4\left(đpcm\right)\)
Vì n \(\in\) N nên 13n lẻ \(\Rightarrow\) 13n + 3 và 13n + 1 đều chẵn \(\Rightarrow\) (13n + 3) . (13n + 1) \(⋮\) 4 \(\Rightarrow\) 13n . (13n + 3) . (13n + 4) . (13n + 1) \(⋮\) 4
a) https://olm.vn/hoi-dap/question/1286785.html
b)
SSH là :
( x - 1 ) : 1 + 1 = x
Tổng là :
( x + 1 ) . x : 2 = 210
x ( x + 1 ) = 420
mà x và x + 1 là 2 số liên tiếp => 420 = 20 x 21 => x = 20
Vậy,............
b, (y+1) + (y+2) + (y+3) + .... + (y+99) = 6138
(y+y+y+y+....+y) + (1+2+3+...+99) = 6138
99.y + 4950 = 6138
99.y = 6138 - 4950
99.y = 1188
y = 1188 : 99
x = 12
a) \(\left(y+1\right)+\left(y+4\right)+\left(y+7\right)+....+\left(y+28\right)=155155\)
\(\Rightarrow\left(y+y+...+y\right)+\left(1+4+7+...+28\right)=155155\)
\(\Rightarrow10x+145=155155\)
\(\Rightarrow10x=155010\)
\(\Rightarrow x=15501\)
Vậy x = 15501
b) \(\left(y+1\right)+\left(y+2\right)+..+\left(y+99\right)=6138\)
\(\Rightarrow\left(y+y+...+y\right)+\left(1+2+3+...+99\right)=6138\)
\(\Rightarrow99x+4950=6138\)
\(\Rightarrow99x=1188\)
\(\Rightarrow x=12\)
Vậy x = 12
\(A=\frac{3}{2}.\frac{4}{3}.\frac{5}{4}...\frac{99}{98}.\frac{100}{99}=\frac{3.4.5....99.100}{2.3.4...98.99}=\frac{100}{2}=50\)
=> A = 50
Câu b:
\(\frac{21}{8}:\frac{5}{6}+\frac{1}{2}:\frac{5}{6}\)
= \(\frac{63}{20}+\frac{3}{5}\)
= \(\frac{15}{4}\)
\(\left(\frac{21}{8}+\frac{1}{2}\right):\frac{5}{6}\)
\(\frac{25}{8}:\frac{5}{6}\)
\(\frac{25}{8}.\frac{6}{5}\)
\(\frac{30}{8}\)
a. ta có (0.1+0.19)+(0.2+0.18)......+0.10
A=0.20+0.20++0.20+0.20+0.20+0.20+0.20+0.20+0.20+0.10
A=1.90
câu b mình pó tay
a ) \(A=0,1+0,2+...+0,19\)
\(A=\left(0,1+0,2+...+0,9\right)+\left(0,10+0,11+...+0,19\right)\)
\(A=0,1\times\left(1+2+...+9\right)+0,1\times\left(1+1,1+...+1,9\right)\)
\(A=0,1\times45+0,1\times14,5\)
\(A=0,1\times\left(45+14,5\right)\)
\(A=0,1\times59,5\)
\(A=5,95\)
b ) \(B=\left(2017\times2016+2014\times2015\right)\times\left(1+\frac{1}{2}\div1\frac{1}{2}+1\frac{1}{3}\right)\)
\(B=\left(2017\times2016+2014\times2015\right)\times\left(1+\frac{1}{2}\div\frac{3}{2}+\frac{4}{3}\right)\)
\(B=\left(2017\times2016+2014\times2015\right)\times\left(1+\frac{2}{6}+\frac{4}{3}\right)\)
\(B=\left(2017\times2016+2014\times2015\right)\times\frac{8}{3}\)
a)13x3x32,27+67,63x39
=39x32,27+67,63x39
=39x(32,27+67,63)
=39x100
=3900
b,= 1- [ 1/2 x 1/3 x1/4 x..... x 1/100 ]
=1/2 x 2/3 x 3/4 x .......x 99/100
= 1x2x3x......x99 / 2x3x4x...... x100 [ rút gọn ]
= 1/100
#)Giải :
Đặt \(K=1+a+a^2+...+a^n\Rightarrow aK=1.a+a.a+a^2.a+...+a^n.a\)
\(=a+a^2+a^3+...+a^{n+1}\)
\(\Rightarrow aK-K=\left(a+a^2+a^3+...+a^{n+1}\right)-\left(1+a+a^2+...+a^n\right)=a^{n+1}-a\)
\(\Rightarrow K=\frac{a^{n+1}-a}{a}\)