\(\forall x\in R,x^2\ge x\) " sai và viết mệnh đề phủ định của n...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
15 tháng 12 2020

Với \(x=\dfrac{1}{2}\in R\Rightarrow x^2=\dfrac{1}{4}< x=\dfrac{1}{2}\)

Do đó mệnh đề đã cho sai

Mệnh đề phủ định:

\("\exists x\in R,x^2< x"\)

18 tháng 4 2017

a) \(\exists x\in R:x.1\ne x\)

mệnh đề phủ định sai.

b) \(\exists x\in R:x.x\ne1\)

mệnh đề phủ định đúng.

c) \(\exists n\in Z:n\ge n^2\)

mệnh đề phủ định đúng.

15 tháng 4 2017

a) Có một số tự nhiên n không chia hết cho chính nó. Mệnh đề này đúng vì n=0 ∈ N, 0 không chia hết cho 0.

b) = "Bình phương của một số hữu tỉ là một số khác 2". Mệnh đề đúng.

c) = ∃x ∈ R: x≥x+1= "Tồn tại số thực x không nhỏ hơn số ấy cộng với 1". Mệnh đề này sai.

d) = ∀x ∈ R: 3x ≠ x2+1= "Tổng của 1 với bình phương của số thực x luôn luôn không bằng 3 lần số x"

Đây là mệnh đề sai vì với x= ta có :

3 =+1

5 tháng 7 2019

\(\exists x\in R,x\le-2\Rightarrow x^2\le4\)

\(\exists x\in R,x\le2\Rightarrow x^2\le4\)

\(\exists x\in R,x^2\le4\Rightarrow x\le2\)

5 tháng 7 2019

Cậu giúp mình xác định tính đúng sai của mệnh đề này với nha

Lập mệnh đề phủ định của các mệnh đề sau:

a) \(\forall x\in R,x>-2\Rightarrow x^2>4\)

b) \(\forall x\in R,x>2\Rightarrow x^2>4\)

c) \(\forall x\in R,x^2>4\Rightarrow x>2\)

d) \(\forall x\in N,x>2\Leftrightarrow x^2>4\)

Cảm on nhiều ạ

HQ
Hà Quang Minh
Giáo viên
23 tháng 9 2023

a) Phủ định của mệnh đề “\(\forall x \in \mathbb{R},\;{x^2} \ne 2x - 2\)” là mệnh đề “\(\exists x \in \mathbb{R},\;{x^2} = 2x - 2\)”

Mệnh đề “\(\exists x \in \mathbb{R},\;{x^2} = 2x - 2\)” sai vì \({x^2} \ne 2x - 2\)với mọi số thực x ( vì \({x^2} - 2x + 2 = {(x - 1)^2} + 1 > 0\) hay \({x^2} > 2x - 2\)).

b) Phủ định của mệnh đề “\(\forall x \in \mathbb{R},\;{x^2} \le 2x - 1\)” là mệnh đề “\(\exists x \in \mathbb{R},\;{x^2} > 2x - 1\)”

Mệnh đề “\(\exists x \in \mathbb{R},\;{x^2} > 2x - 1\)” đúng vì có \(x = 2 \in \mathbb{R}:{2^2} >  2.2 - 1\) hay \(4 > 3\) (luôn đúng).

c) Phủ định của mệnh đề “\(\exists x \in \mathbb{R},\;x + \frac{1}{x} \ge 2\)” là mệnh đề “\(\forall x \in \mathbb{R},\;x + \frac{1}{x} < 2\)”.

Mệnh đề “\(\forall x \in \mathbb{R},\;x + \frac{1}{x} < 2\)” sai vì \(x = 2 \in \mathbb{R}\) nhưng \(x + \frac{1}{x} = 2 + \frac{1}{2} > 2\).

d) Phủ định của mệnh đề “\(\exists x \in \mathbb{R},\;{x^2} - x + 1 < 0\)” là mệnh đề “\(\forall x \in \mathbb{R},\;{x^2} - x + 1 \ge 0\)”.

Mệnh đề “\(\forall x \in \mathbb{R},\;{x^2} - x + 1 \ge 0\)” đúng vì \({x^2} - x + 1 = {\left( {x - \frac{1}{2}} \right)^2} + \frac{3}{4} \ge 0\) với mọi số thực x.

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

a) Mệnh đề sai, vì chỉ có \(x =  - 3\) thảo mãn \(x + 3 = 0\) nhưng \( - 3 \notin \mathbb{N}\).

Mệnh đề phủ định của mệnh đề này là: “\(\forall x \in \mathbb{N},x + 3 \ne 0\)”.

b) Mệnh đề đúng, vì  \({(x - 1)^2} \ge 0\) hay\({x^2} + 1 \ge 2x\) với mọi số thực x.

Mệnh đề phủ định của mệnh đề này là: “\(\exists x \in \mathbb{R},{x^2} + 1 < 2x\)”

 c) Mệnh đề sai, vì có \(a =  - 2 \in \mathbb{R},\sqrt {{{( - 2)}^2}}  = 2 \ne a\)

Mệnh đề phủ định của mệnh đề này là: “\(\exists a \in \mathbb{R},\sqrt {{a^2}}  \ne a\)”.

5 tháng 9 2020

Mệnh đề sau sai 

Vì khi x = 1 thì :

VT = \(\frac{1^2-1}{1-1}=\frac{0}{0}\) ( không có phép chia cho 0 ) 

Phủ định của mệnh đề : 

\(\forall x\in R\backslash\left\{1\right\};\frac{x^2-1}{x-1}=x+1\)  là mệnh đề đúng 

8 tháng 9 2020

Mệnh đề đúng.

Vì \(\left(2n-1\right)^2-1=4n^2-4n+1-1=4\left(n^2-n\right)⋮4,\forall n\inℕ\)

Phủ định: \(\exists n\inℕ,\left(2n-1\right)^2-1⋮̸4\)

8 tháng 9 2020

\(\left(2n-1\right)^2-1\) 

\(=4n^2-4n+1-1\) 

\(=4n^2-4n\) 

\(=4n\left(n-1\right)⋮4\forall n\) 

Vậy mệnh đề trên đúng 

Mệnh đề phủ định của mệnh đề trên 

\(\exists x\in R:\left(2n-1\right)^2-1\) không chia hết cho 4 

30 tháng 8 2019

Đề thiếu r