Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có p nguyên tố
p = 42k+r
=> r UCLN(r;42) =1 và r lẻ
lại có ƯỚC 42 = 1,2,3,4,6,7,13,14,21,42
=> r không chia hết 1,2,3,4,6,7
lại có r<42 => r <7^2
r là hợp số => r= a.b <7^2
=> it nhất a or b <7, nhưng a,b # 1,2,3,4,6,7 => a hoạc b =5
r= a.b => a=b=5
=> r=25
Ta có : p = 42k+r = 2.3.7.k + r (k;r \in∈N),0<r<42)
Vì p là số nguyên tố nên không chia hết cho 2;3;7
Các hợp số không chia hết cho 2 là 9 ; 15 ; 21 ; 25 ; 27 ; 33 ; 35 ; 39
Các hợp số không chia hết cho 3 là : 25 ; 35
Các hợp số không chia hết cho 7 là : 25 (nhân)
Vậy r = 25
good luck!
Ta có: p= 42 a + r = 2.3.7 a + r (a,b thuộc N; 0< r <42)
* Vì p là số nguyên tố nên r không chia hết cho 2;3;7.
Các hợp số nhỏ hơn 42 không chia hết cho 2 là {9;15;21;25;27;33;35;39}
Loại bỏ các số chia hết cho 3, cho 7 ta còn có số 25
=> Vậy r = 25
a,Với p bằng 3 ;p-1 =23(thoả mãn)
8p+1=25(loại)
Với p khác 3 suy ra p không chia hết cho 3; 8p không chia hết cho 3
mà( 8p-1) p (8p+1) là tích của 3 số tự nhiên liên tiếp
8p-1 >3 (p thuộc N) suy ra 8p-1 không chia hết cho 3
8p+1 chia hết cho 3
mà 8p+1>3
8p+1 là hợp số (đpcm)
**** mk nha
2, 42=3.2.7
P=42k+7
Ta có:
Nếu p=2 ;r=40(t/m)
Nếu p=3 ;r=39(loại)
Nếu p>3,do p là nguyên tố nên ko thể là các ước nguyên dương của 42;r hợp số mà nên r=25
mk làm tiếp nha
1.
Ta có p = 42k r = 2.3.7.k + r ( k,r \(\in\)N , 0 < r < 42 )
Vì p là số nguyên tố nên r không chia hết cho 2, 3, 7.
Các hợp số nhỏ hơn 42 và không chia hết cho 2 là 9, 15, 21, 25, 27, 33, 35, 39.
Loại đi các số chia hết cho 3, cho 7, chỉ còn 25.
Vậy r = 25.
2) Ta có : 10^5000 + 125=100...00+125=100...00125
Có tổngcác chữ số là 1+1+2+5=9 chia hết cho 9
Do 10^500 chia hết cho 125 và 125 chia hết cho 125
=> 10^5000+125 chia hết cho 5