\(\frac{?}{?}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 3 2016

=1/2+1/2+1/2+1/2+1/2+1/2

=1/2.6

=6/2=3

18 tháng 1 2017

\(\frac{149}{63}\)

2 tháng 2 2017

223 phần 63

NV
24 tháng 4 2020

a/ \(I=\int sinxdx-\frac{1}{2}\int e^{2x}d\left(2x\right)=-cosx-\frac{1}{2}e^{2x}+C\)

b/ Ko rõ đề

c/ Không rõ đề

d/ Đặt \(\left\{{}\begin{matrix}u=x+1\\dv=sinx.dx\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=dx\\v=-cosx\end{matrix}\right.\)

\(\Rightarrow I=-\left(x+1\right)cosx+\int cosxdx=-\left(x+1\right)cosx+sinx+C\)

NV
28 tháng 3 2019

Câu 1: Xét trên miền [1;4]

Do \(f\left(x\right)\) đồng biến \(\Rightarrow f'\left(x\right)\ge0\)

\(x\left(1+2f\left(x\right)\right)=\left[f'\left(x\right)\right]^2\Leftrightarrow x=\frac{\left[f'\left(x\right)\right]^2}{1+2f\left(x\right)}\Leftrightarrow\frac{f'\left(x\right)}{\sqrt{1+2f\left(x\right)}}=\sqrt{x}\)

Lấy nguyên hàm 2 vế:

\(\int\frac{f'\left(x\right)dx}{\sqrt{1+2f\left(x\right)}}=\int\sqrt{x}dx\Leftrightarrow\int\left(1+2f\left(x\right)\right)^{-\frac{1}{2}}d\left(f\left(x\right)\right)=\int x^{\frac{1}{2}}dx\)

\(\Leftrightarrow\sqrt{1+2f\left(x\right)}=\frac{2}{3}x\sqrt{x}+C\)

Do \(f\left(1\right)=\frac{3}{2}\Rightarrow\sqrt{1+2.\frac{3}{2}}=\frac{2}{3}.1\sqrt{1}+C\Rightarrow C=\frac{4}{3}\)

\(\Rightarrow\sqrt{1+2f\left(x\right)}=\frac{2}{3}x\sqrt{x}+\frac{4}{3}\)

Đến đây có thể bình phương chuyển vế tìm hàm \(f\left(x\right)\) chính xác, nhưng dài, thay luôn \(x=4\) vào ta được:

\(\sqrt{1+2f\left(4\right)}=\frac{2}{3}4.\sqrt{4}+\frac{4}{3}=\frac{20}{3}\Rightarrow f\left(4\right)=\frac{\left(\frac{20}{3}\right)^2-1}{2}=\frac{391}{18}\)

NV
28 tháng 3 2019

Câu 2:

Diện tích hình phẳng cần tìm là hai miền đối xứng qua Oy nên ta chỉ cần tính trên miền \(x\ge0\)

Hoành độ giao điểm: \(sinx=x-\pi\Rightarrow x=\pi\)

\(S=2\int\limits^{\pi}_0\left(sinx-x+\pi\right)dx=4+\pi^2\Rightarrow\left\{{}\begin{matrix}a=4\\b=1\end{matrix}\right.\)

\(\Rightarrow2a+b^3=9\)

DD
5 tháng 6 2021

\(y=x+sin\left(2x\right)\)

\(y'=1+2cos\left(2x\right)\)

\(y'=0\Leftrightarrow1+cos\left(2x\right)=0\Leftrightarrow\orbr{\begin{cases}x=\frac{\pi}{3}\\x=\frac{2\pi}{3}\end{cases}}\)vì \(x\in\left(0,\pi\right)\).

\(y\left(\frac{\pi}{3}\right)=\frac{\pi}{3}+\frac{\sqrt{3}}{2},y\left(\frac{2\pi}{3}\right)=\frac{2\pi}{3}-\frac{\sqrt{3}}{2}\)

\(y\left(\frac{\pi}{3}\right)>y\left(\frac{2\pi}{3}\right)\)ta chọn D

bài 3:a)O=AC x BD (x là giao nhá)=> SO \(\perp\) (ABCD)=> OC=\(a\sqrt{2}\)\(\Rightarrow\widehat{SCO}=60^o\Rightarrow SO=OC.tan60^o=\frac{a\sqrt{6}}{2}\Rightarrow V_{k.chóp}=\frac{1}{3}SO.S_{ABCD}=\frac{1}{3}.a\frac{\sqrt{6}}{2}.a^2=\frac{a^3\sqrt{6}}{6}\)b) \(\Delta SAC\)có \(\widehat{SCA=60^o}\)=> \(\Delta SAC\)đềuAE\(\perp\)SC=> AE=\(\frac{a\sqrt{6}}{2}\)AExSO=G => G là trọng tâm \(\Delta SAC\)=> \(\frac{SG}{SO}\)=\(\frac{2}{3}\)\(\hept{\begin{cases}BD\perp SO\\BD\perp...
Đọc tiếp

bài 3:a)O=AC x BD (x là giao nhá)=> SO \(\perp\) (ABCD)
=> OC=\(a\sqrt{2}\)\(\Rightarrow\widehat{SCO}=60^o\Rightarrow SO=OC.tan60^o=\frac{a\sqrt{6}}{2}\Rightarrow V_{k.chóp}=\frac{1}{3}SO.S_{ABCD}=\frac{1}{3}.a\frac{\sqrt{6}}{2}.a^2=\frac{a^3\sqrt{6}}{6}\)

b) \(\Delta SAC\)có \(\widehat{SCA=60^o}\)=> \(\Delta SAC\)đều

AE\(\perp\)SC=> AE=\(\frac{a\sqrt{6}}{2}\)

AExSO=G => G là trọng tâm \(\Delta SAC\)=> \(\frac{SG}{SO}\)=\(\frac{2}{3}\)

\(\hept{\begin{cases}BD\perp SO\\BD\perp AC\end{cases}\Rightarrow BD\perp\left(SAC\right)\Rightarrow BD\perp SC}\)

(AMEN)\(\perp\)SC => MN \(\perp\)SC => MN //BD => \(\frac{MN}{BD}=\frac{SG}{SO}=\frac{2}{3}\Rightarrow MN=\frac{2}{3}BD=\frac{2a\sqrt{2}}{3}\)

\(S_{AMEN}=\frac{1}{2}MN.AE=\frac{1}{2}.\frac{2a\sqrt{2}}{3}.\frac{a\sqrt{6}}{2}=\frac{a^2\sqrt{3}}{3}\)

\(\frac{V_{SAMEN}}{V_{SABCD}}=\frac{SM}{SB}.\frac{SE}{SC}.\frac{SN}{SD}=\frac{2}{3}.\frac{1}{2}.\frac{2}{3}=\frac{2}{9}\)

\(\Rightarrow V_{SAMEN}=\frac{2}{9}.\frac{a^3\sqrt{6}}{6}=\frac{a^3\sqrt{6}}{27}\)

phần trả lời bên dưới là câu 4

1
5 tháng 8 2019

I*AB=> SI\(\perp\)AB

SI=\(SI=\frac{AB\sqrt{3}}{2}=\frac{a\sqrt{3}}{2}\)

\(V_{k.chop}=\frac{1}{3}.\frac{a\sqrt{3}}{2}.a^2=\frac{a^3\sqrt{3}}{4}\)

b) Kẻ IK//DM(K\(\in\)AD)

Kẻ KH\(\perp\)DM(H\(\in\)DM)

=> d(I,DM)=d(K,DM0=KH

\(\Delta IAK~\Delta DCM\Rightarrow AK=\frac{1}{2}CM=\frac{a}{6}\)=> KD=5a/6

\(cos\widehat{ADM}=cos\widehat{DMC}=\frac{CM}{DM}=\frac{\frac{a}{3}}{\frac{a\sqrt{10}}{3}}=\frac{1}{\sqrt{10}}\)

=> KH=KDsin\(\widehat{ADM}\)=\(\sqrt{1-\cos\widehat{ADM}^2}=\frac{5a}{6}.\frac{3}{\sqrt{10}}=\frac{a\sqrt{10}}{4}\)

d(S,DM)=\(\sqrt{SI^2+d\left(I,DM\right)^2}=\frac{a\sqrt{22}}{4}\)

14 tháng 5 2016

a. \(2^{2\log_25+\log_{\frac{1}{2}}9}\) và \(\frac{\sqrt{626}}{6}\)

Ta có : \(2^{2\log_25+\log_{\frac{1}{2}}9}=2^{\log_225-\log_29}=2^{\log_2\frac{25}{9}}=\frac{25}{9}=\frac{\sqrt{625}}{9}< \frac{\sqrt{626}}{6}\)

           \(\Rightarrow2^{2\log_25+\log_{\frac{1}{2}}9}< \frac{\sqrt{626}}{6}\)

 

b. \(3^{\log_61,1}\) và \(7^{\log_60,99}\)

Ta có : \(\begin{cases}\log_61,1>0\Rightarrow3^{\log_61,1}>3^0=1\\\log_60,99< 0\Rightarrow7^{\log_60,99}< 7^0=1\end{cases}\)

             \(\Rightarrow3^{\log_61,1}>7^{\log_60,99}\)

 

c.  \(\log_{\frac{1}{3}}\frac{1}{80}\) và \(\log_{\frac{1}{2}}\frac{1}{15+\sqrt{2}}\)

Ta có : \(\begin{cases}\log_{\frac{1}{2}}\frac{1}{80}=\log_{3^{-1}}80^{-1}=\log_380< \log_381=4\\\log_{\frac{1}{2}}\frac{1}{15+\sqrt{2}}=\log_{2^{-1}}\left(15+\sqrt{2}\right)^{-1}=\log_2\left(15+\sqrt{2}\right)>\log_216=4\end{cases}\)

            \(\Rightarrow\log_{\frac{1}{3}}\frac{1}{80}< \log_{\frac{1}{2}}\frac{1}{15+\sqrt{2}}\)

AH
Akai Haruma
Giáo viên
6 tháng 3 2017

Câu 1)

Ta có \(I=\int ^{1}_{0}\frac{dx}{\sqrt{3+2x-x^2}}=\int ^{1}_{0}\frac{dx}{4-(x-1)^2}\).

Đặt \(x-1=2\cos t\Rightarrow \sqrt{4-(x-1)^2}=\sqrt{4-4\cos^2t}=2|\sin t|\)

Khi đó:

\(I=\int ^{\frac{2\pi}{3}}_{\frac{\pi}{2}}\frac{d(2\cos t+1)}{2\sin t}=\int ^{\frac{2\pi}{3}}_{\frac{\pi}{2}}\frac{2\sin tdt}{2\sin t}=\int ^{\frac{2\pi}{3}}_{\frac{\pi}{2}}dt=\left.\begin{matrix} \frac{2\pi}{3}\\ \frac{\pi}{2}\end{matrix}\right|t=\frac{\pi}{6}\)

Câu 3)

\(K=\int ^{3}_{2}\ln (x^3-3x+2)dx=\int ^{3}_{2}\ln [(x+2)(x-1)^2]dx\)

\(=\int ^{3}_{2}\ln (x+2)d(x+2)+2\int ^{3}_{2}\ln (x-1)d(x-1)\)

Xét \(\int \ln tdt\): Đặt \(\left\{\begin{matrix} u=\ln t\\ dv=dt\end{matrix}\right.\Rightarrow \left\{\begin{matrix} du=\frac{dt}{t}\\ v=t\end{matrix}\right.\Rightarrow \int \ln t dt=t\ln t-t\)

\(\Rightarrow K=\left.\begin{matrix} 3\\ 2\end{matrix}\right|(x+2)[\ln (x+2)-1]+2\left.\begin{matrix} 3\\ 2\end{matrix}\right|(x-1)[\ln (x-1)-1]\)

\(=5\ln 5-4\ln 4-1+4\ln 2-2=5\ln 5-4\ln 2-3\)

AH
Akai Haruma
Giáo viên
6 tháng 3 2017

Bài 2)

\(J=\int ^{1}_{0}x\ln (2x+1)dx\). Đặt \(\left\{\begin{matrix} u=\ln (2x+1)\\ dv=xdx\end{matrix}\right.\Rightarrow \left\{\begin{matrix} du=\frac{2dx}{2x+1}\\ v=\frac{x^2}{2}\end{matrix}\right.\)

Khi đó:

\(J=\left.\begin{matrix} 1\\ 0\end{matrix}\right|\frac{x^2\ln (2x+1)}{2}-\int ^{1}_{0}\frac{x^2}{2x+1}dx\)\(=\frac{\ln 3}{2}-\frac{1}{4}\int ^{1}_{0}(2x-1+\frac{1}{2x+1})dx\)

\(=\frac{\ln 3}{2}-\left.\begin{matrix} 1\\ 0\end{matrix}\right|\frac{x^2-x}{4}-\frac{1}{8}\int ^{1}_{0}\frac{d(2x+1)}{2x+1}=\frac{\ln 3}{2}-\left.\begin{matrix} 1\\ 0\end{matrix}\right|\frac{\ln (2x+1)}{8}\)

\(=\frac{\ln 3}{2}-\frac{\ln 3}{8}=\frac{3\ln 3}{8}\)

NV
15 tháng 11 2019

\(I_1=\int cos\left(\frac{\pi x}{2}\right)dx-\int\frac{2}{6x+5}dx=\frac{2}{\pi}\int cos\left(\frac{\pi x}{2}\right)d\left(\frac{\pi x}{2}\right)-\frac{1}{3}\int\frac{d\left(6x+5\right)}{6x+5}\)

\(=\frac{2}{\pi}sin\left(\frac{\pi x}{2}\right)-\frac{1}{3}ln\left|6x+5\right|+C\)

\(I_2=-\frac{1}{2}\int\left(4-x^4\right)^{\frac{1}{2}}d\left(4-x^4\right)=-\frac{1}{2}.\frac{\left(4-x^4\right)^{\frac{3}{2}}}{\frac{3}{2}}+C=\frac{-\sqrt{\left(4-x^4\right)^3}}{3}+C\)

\(I_3=2\int e^{\frac{1}{2}\left(4+x^2\right)}d\left(\frac{1}{2}\left(4+x^2\right)\right)=2e^{\frac{1}{2}\left(4+x^2\right)}+C=2\sqrt{e^{4+x^2}}+C\)

\(I_4=-\frac{1}{2}\int\left(1-x^2\right)^{\frac{1}{3}}d\left(1-x^2\right)=-\frac{1}{2}.\frac{\left(1-x^2\right)^{\frac{4}{3}}}{\frac{4}{3}}+C=-\frac{3}{8}\sqrt[3]{\left(1-x^2\right)^4}+C\)

\(I_5=\int e^{sinx}d\left(sinx\right)=e^{sinx}+C\)

\(I_6=\int\frac{d\left(1+sinx\right)}{1+sinx}=ln\left(1+sinx\right)+C\)

NV
15 tháng 11 2019

\(I_7=\int\left(x+1\right)\sqrt{x-1}dx\)

Đặt \(\sqrt{x-1}=t\Rightarrow x=t^2+1\Rightarrow dx=2tdt\)

\(\Rightarrow I_7=\int\left(t^2+2\right).t.2t.dt=\int\left(2t^4+4t^2\right)dt=\frac{2}{5}t^5+\frac{4}{3}t^3+C\)

\(=\frac{2}{5}\sqrt{\left(1-x\right)^5}+\frac{4}{3}\sqrt{\left(1-x\right)^3}+C\)

\(I_8=\int\left(2x+1\right)^{20}dx\)

Đặt \(2x+1=t\Rightarrow2dx=dt\Rightarrow dx=\frac{1}{2}dt\)

\(\Rightarrow I_8=\frac{1}{2}\int t^{20}dt=\frac{1}{42}t^{21}+C=\frac{1}{42}\left(2x+1\right)^{21}+C\)

\(I_9=-3\int\left(1-x^3\right)^{-\frac{1}{2}}d\left(1-x^3\right)=-3.\frac{\left(1-x^3\right)^{\frac{1}{2}}}{\frac{1}{2}}+C=-6\sqrt{1-x^3}+C\)

\(I_{10}=\int\frac{x}{\sqrt{2x+3}}dx\)

Đặt \(\sqrt{2x+3}=t\Rightarrow x=\frac{1}{2}t^2-\frac{3}{2}\Rightarrow dx=t.dt\)

\(\Rightarrow I_{10}=\int\frac{\frac{1}{2}t^2-\frac{3}{2}}{t}.t.dt=\frac{1}{2}\int\left(t^2-3\right)dt=\frac{2}{3}t^3-\frac{3}{2}t+C\)

\(=\frac{2}{3}\sqrt{\left(2x+3\right)^3}-\frac{3}{2}\sqrt{2x+3}+C\)