\(1998^{1999^{2000}}\)

tìm 2, 3 chữ số tận cùng

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 10 2015

220 = (210)= 10242 = (...76)

Chú ý: Lũy thừa những số có tận cùng là 76 thì tận cùng là 76

+) Ta có: 22000 = (220)100 = (...76)100 = (...76)

+) 22001 = 2.22000 = 2.(...76) = (...52)

+) 22002 = 22.22000 = 4.(...76) = (....04)

=> 22000 + 22001 + 22002 có hai chữ số tận cùng là hai chữ số tận cùng của (76 + 52 + 04) = 132

Vậy  22000 + 22001 + 22002 có tận cùng là 32

22000+22001+22002=22000(1+2+22)=22000.5=21999.10

21999=24.24...24.23

=16.16...16.8

=...8

=>21999.10=...8.10=...80

Vậy 2 chữ số tận cùng của 22000+22001+22002 là 80

30 tháng 9 2018

\(3^{2^{2003}}=3^{\overline{...6}}=\overline{...9}\)

Vậy \(3^{2^{2003}}\)có tận cùng là 9

Đây không phải là bài lớp 9

28 tháng 9 2018

tận cùng là 6

1 tháng 7 2017

(mk dùng kí hiệu  \(\overline{...6}\)  để chỉ số có tận cùng là 6 nha)

Ta có  \(2^{1992}=\left(2^4\right)^{498}=\left(\overline{...6}\right)^{498}=\overline{..6}\)

=>  \(3^{2^{1992}}=3^6=9\)  (mod 10).       (Dòng này mk dùng dấu "=" thay cho dấu đồng dư nha vì ko có dấu đồng dư)

Lại có  \(9^{1992}=\left(9^4\right)^{498}=\left(\overline{...1}\right)^{498}=\overline{...1}\)

=>  \(2^{9^{1992}}=2^1=2\)  (mod 10)   (dòng này cũng là dấu đồng dư)

Do đó chữ số tận cùng của  \(3^{2^{1992}}-2^{9^{1992}}\)  là  9 - 2 = 7

30 tháng 10 2015

Chờ chút để mình dùng đồng dư xem có được không.