![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Vì \(\begin{cases}5a+3b⋮1995\\13a+8b⋮1995\end{cases}\) => \(\begin{cases}8.\left(5a+3b\right)⋮1995\\3.\left(13a+8b\right)⋮1995\end{cases}\)=> \(\begin{cases}40a+24b⋮1995\\39a+24b⋮1995\end{cases}\)
=> \(\left(40a+24b\right)-\left(39a+24b\right)⋮1995\)
=> \(40a+24b-39a-24b⋮1995\)
=> \(b⋮1995\left(1\right)\)
=> \(8b⋮1995\)
Mặt khác \(13a+8b⋮1995\)
=> \(13a⋮1995\)
Mà (13;1995)=1 => \(a⋮1995\left(2\right)\)
Từ (1) và (2) => \(a,b⋮1995\left(đpcm\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có:
\(A=\frac{1946}{1986}=1-\frac{40}{1986}\)
\(B=\frac{1968}{2008}=1-\frac{40}{2008}\)
Vì \(\frac{40}{1986}>\frac{40}{2008}\Rightarrow1-\frac{40}{1986}< 1-\frac{40}{2008}\)
\(\frac{1946}{1986}< \frac{1968}{2008}\Rightarrow A< B\)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(1=\dfrac{1946}{1986}+\dfrac{40}{1986}\)
\(1=\dfrac{1968}{2008}+\dfrac{40}{2008}\)
\(\Rightarrow\)\(\dfrac{40}{1968}>\dfrac{40}{2008}\)
\(\Rightarrow\dfrac{1946}{1968}>\dfrac{1968}{2008}\)
Vì \(\left\{{}\begin{matrix}1=\dfrac{1946}{1986}+\dfrac{40}{1986}\\1=\dfrac{1968}{2008}+\dfrac{40}{2008}\end{matrix}\right.\)
Mà \(\dfrac{40}{1986}>\dfrac{40}{2008}\)
Nên \(\dfrac{1946}{1986}>\dfrac{1968}{2008}\)
Vậy \(\dfrac{1946}{1986}>\dfrac{1968}{2008}\).
Tìm x , y \(\in\)Z để tổng x + y = 1995 và tích x.y chia hết cho 1995 .
Giải đầy đủ giúp mình nhé :)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
ta có \(A=\frac{1946}{1986}\)
\(\Rightarrow1-A=1-\frac{1946}{1986}=\frac{1986}{1986}-\frac{1946}{1986}=\frac{40}{1986}\)
\(\Rightarrow1-B=1-\frac{1968}{2008}=\frac{2008}{2008}-\frac{1968}{2008}=\frac{40}{2008}\)
Vì \(\frac{40}{1986}>\frac{40}{2008}\Rightarrow1-\frac{1946}{1986}>1-\frac{1968}{2008}\)
nên \(\Rightarrow1-A>1-B\left(1\right)\)
từ (1) <=> A<B
\(1960+1968-\left\{1960+1995-\left[1990+\left(1995-1968\right)\right]\right\}\)
\(=1960+1968-\left\{1960+1995-\left[1990+27\right]\right\}\)
\(=1960+1968-\left\{1960+1995-2017\right\}\)
\(=1960+1968-\left\{3955-2017\right\}\)
\(=1960+1968-1938\)
\(=3928-1938\)
\(=1990\)
\(\text{Hok tốt! }\)
\(\text{@Kaito Kid}\)