Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
\(=\dfrac{-1}{2}+\dfrac{3}{5}-\dfrac{1}{9}+\dfrac{1}{131}+\dfrac{2}{7}+\dfrac{4}{35}-\dfrac{7}{18}\)
\(=\left(-\dfrac{1}{2}-\dfrac{1}{9}-\dfrac{7}{18}\right)+\left(\dfrac{3}{5}+\dfrac{2}{7}+\dfrac{4}{35}\right)+\dfrac{1}{131}\)
\(=\dfrac{-9-2-7}{18}+\dfrac{21+10+4}{35}+\dfrac{1}{131}\)
=1/131
Bài 2:
b: \(B=\dfrac{1}{99}-\left(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{98\cdot99}\right)\)
\(=\dfrac{1}{99}-\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{98}-\dfrac{1}{99}\right)\)
\(=\dfrac{1}{99}-\dfrac{98}{99}=-\dfrac{97}{99}\)
1^3-3^5-(-3^5)+1^64-2^9-1^36+1^15
=1+(-3^5+3^5)+1-2^9-1+1
=2-2^9
=-510
C=\(\frac{1}{100}-\frac{1}{100.99}-\frac{1}{99.98}-\frac{1}{98.97}-...-\frac{1}{3.2}-\frac{1}{2.1}\)
=\(\frac{1}{100}-\left(\frac{1}{2.1}+\frac{1}{2.3}+...+\frac{1}{97.98}+\frac{1}{98.99}+\frac{1}{99.100}\right)\)
=\(\frac{1}{100}-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{97}-\frac{1}{98}+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\right)\)
=\(\frac{1}{100}-\left(1-\frac{1}{100}\right)\)
=\(\frac{1}{100}-\frac{99}{100}\)
=\(\frac{-98}{100}=\frac{-49}{50}\)
C=1/100 -1/100.99 -1/99.98 -1/98.97-......- 1/3.2 -1/2.1
= 1/100 - (1/100.99 + 1/99.98 + 1/98.97-......+ 1/3.2 +1/2.1)
Đặt A = 1/100.99 + 1/99.98 + 1/98.97-......+ 1/3.2 +1/2.1 => C = 1/100 - A
Dễ thấy 1/2.1 = 1/1 - 1/2
1/3.2 = 1/2 - 1/3
.....................
1/99.98 = 1/98 - 1/99
1/100.99 = 1/99 - 1/100
=> cộng từng vế với vế ta
\(\dfrac{1}{9}-0,3. \dfrac{3}{9}+\dfrac{1}{3}\)
\(=\dfrac{1}{9}-\dfrac{1}{10}+\dfrac{1}{3}\)
\(=\dfrac{1}{90}+\dfrac{1}{3}=\dfrac{31}{90}\)
Lời giải:
$\frac{1}{9}-0,3.\frac{3}{9}+\frac{1}{3}=\frac{1}{9}-\frac{1}{10}+\frac{1}{3}=\frac{31}{90}$