
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


\(\frac{1}{7}\times\frac{1}{49}\times49^2=\frac{1}{7}\times\frac{49^2}{49}=\frac{1}{7}\times49=\frac{49}{7}=\frac{7\times7}{7}=7\)


đăng từng câu nhé bạn
chứ kiểu vậy thì ko có ai giải cho bạn đâu

\(D=\left(\frac{3}{7}\right)^{21}:\left(\left(\frac{3}{7}\right)^2\right)^6=\left(\frac{3}{7}\right)^{21}:\left(\frac{3}{7}\right)^{2.6}=\left(\frac{3}{7}\right)^9\)
\(E=\left(-\frac{1}{3}\right)^{7+9}:\left(-\frac{1}{3}\right)^{5.3}+\left(-2\right)^{12+3}:\left(-2\right)^{15}=\left(-\frac{1}{3}\right)^{16}:\left(-\frac{1}{3}\right)^{15}+\left(-2\right)^{15}:\left(-2\right)^{15}=-\frac{1}{3}+1=\frac{2}{3}\)

a ) \(\left(\frac{1}{32}\right)^x=\left(\frac{1}{2}\right)^6\)
\(\Rightarrow\left(\left(\frac{1}{2}\right)^5\right)^x=\left(\frac{1}{2}\right)^6\)
\(\Rightarrow\left(\frac{1}{2}\right)^{5x}=\frac{1}{2}^6\)
\(\Rightarrow5x=6\)
\(\Rightarrow x=1,2\)

a)Đặt \(A=7^6+7^5-7^4\)
\(A=7^4\left(7^2+7-1\right)\)
\(A=7^4\cdot55⋮55\left(đpcm\right)\)
b)\(A=1+5+5^2+5^3+...+5^{50}\)
\(5A=5+5^2+5^3+5^4+...+5^{51}\)
\(5A-A=\left(5+5^2+5^3+5^4+...+5^{51}\right)-\left(1+5+5^2+5^3+...+5^{50}\right)\)
\(4A=5^{51}-1\)
\(A=\frac{5^{51}-1}{4}\)
a)
Ta có :
\(7^6+7^5-7^4=7^4\left(7^2+7-1\right)=7^4.55\)
=> Chia hết cho 5
b)
Ta có :
\(A=1+5+5^2+....+5^{50}\)
\(5A=5+5^2+....+5^{51}\)
=> 5A - A = \(\left(5+5^2+....+5^{51}\right)\)\(-\left(1+5+....+5^{50}\right)\)
\(\Rightarrow4A=5^{51}-1\)
\(\Rightarrow A=\frac{5^{51}-1}{4}\)
\(\left(\dfrac{1}{7}\right)^2.\dfrac{1}{7}.\dfrac{1}{49^2}\)
= \(\dfrac{1}{49}.\dfrac{1}{7}.\dfrac{1}{2401}\)
= \(\dfrac{1}{823543}\)
\(\left(\dfrac{1}{7}\right)^2\cdot\dfrac{1}{7}\cdot\left(\dfrac{1}{49}\right)^2=\left(\dfrac{1}{7}\right)^5\)