Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2=\frac{1}{16}=\left(\frac{1}{4}\right)^1=\left(-\frac{1}{4}\right)^2\)
Vậy có 2 ngiệm x
TH1: \(x=\frac{1}{4}\)
TH2: \(x=-\frac{1}{4}\)
x2=1/16
=>x=1/4; x=-1/4
x5=(2/3)5
=>x=2/3
x4=(3/2)4
=>x=3/2; x=-3/2
a)2x+1+2x+2=48
=>2x.21+2x.22=48
=>2x.2+2x.4=48
=>2x.(2+4)=48
=>2x. 6 =48
=>2x = 48:6
=>2x = 8
=>2x = 23
=> x = 3
Vậy x = 3
a)\(2^{x-1}=16\)
\(\Rightarrow2^{x-1}=2^4\)
\(\Rightarrow x-1=4\Rightarrow x=5\)
b)\(\left(x-1\right)^2=25\)
\(\Rightarrow\left(x-1\right)^2=5^2=\left(-5\right)^2\)
\(\Rightarrow\left(x-1\right)^2=5^2\) hoặc \(\left(x-1\right)^2=\left(-5\right)^2\)
\(\Rightarrow x-1=5\) hoặc \(x-1=-5\)
\(\Rightarrow x=6\) hoặc \(x=-4\)
\(a.2^{x-1}=16\)
\(2^{x-1}=2^4\)
\(\Rightarrow x-1=4\)
\(x=5\)
\(b.\left(x-1\right)^2=5^2\)
\(\Rightarrow\orbr{\begin{cases}x-1=5\\x-1=-5\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=6\\x=-4\end{cases}}\)
\(c.\left(x-\frac{1}{2}\right)^3=\left(\frac{1}{3}\right)^3\)
\(\Rightarrow x-\frac{1}{2}=\frac{1}{3}\)
\(x=\frac{5}{6}\)
Giải:
a) Đặt \(\frac{x}{10}=\frac{y}{6}=k\)
\(\Rightarrow x=10k,y=6k\)
Mà \(xy=60\)
\(\Rightarrow10k6k=60\)
\(\Rightarrow60k^2=60\)
\(\Rightarrow k^2=1\)
\(\Rightarrow k=\pm1\)
+) \(k=1\Rightarrow x=10;y=6\)
+) \(k=-1\Rightarrow x=-10;y=-6\)
Vậy cặp số \(\left(x;y\right)\) là \(\left(10;6\right);\left(-10;-6\right)\)
b) Hình như đề sai !!!
c) Giải:
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x^2}{9}=\frac{y^2}{16}=\frac{x^2+y^2}{9+16}=\frac{100}{25}=4\)
+) \(\frac{x^2}{9}=4\Rightarrow x^2=36\Rightarrow x=\pm6\)
+) \(\frac{y^2}{16}=4\Rightarrow y^2=64\Rightarrow y=\pm8\)
( x, y cùng dấu )
Vậy cặp số ( x; y ) là ( 6; 8 ) ; ( -6; -8 )
Bài 1:
a)
\(\dfrac{4^2\cdot25^2+32\cdot125}{2^3\cdot5^2}\\ =\dfrac{\left(2^2\right)^2\cdot\left(5^2\right)^2+2^5\cdot5^3}{2^3\cdot5^2}\\ =\dfrac{2^{2\cdot2}\cdot5^{2\cdot2}+2^5\cdot5^3}{2^3\cdot5^2}\\ =\dfrac{2^4\cdot5^4+2^5\cdot5^3}{2^3\cdot5^2}\\ =\dfrac{2^4\cdot5^4}{2^3\cdot5^2}+\dfrac{2^5\cdot5^3}{2^3\cdot5^2}\\ =2\cdot5^2+2^2\cdot5\\ =2\cdot25+4\cdot5\\ =50+20\\ =70\)
c)
\(\dfrac{\left(1-\dfrac{4}{9}-2\right)\cdot16}{\left(2-3\right)^{-2}}+12\\ =\dfrac{\left(\dfrac{9}{9}-\dfrac{4}{9}-\dfrac{18}{9}\right)\cdot16}{\left(-1\right)^{-2}}+12\\ =\dfrac{\dfrac{-13}{9}\cdot16}{\dfrac{1}{\left(-1\right)^2}}+12\\ =\dfrac{\dfrac{-208}{9}}{1}+12\\ =\dfrac{-208}{9}+12\\ =\dfrac{-208}{9}+\dfrac{108}{9}\\ =\dfrac{100}{9}\)
Bài 2:
a)
\(\left(x+2\right)^2=36\\ \Rightarrow\left[{}\begin{matrix}x+2=6\\x+2=-6\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=4\\x=-8\end{matrix}\right.\)
b)
\(\left(1,78^{2x-2}-1,78^x\right):1,78^x=0\\ \Leftrightarrow\dfrac{1,78^{2x-2}}{1,78^x}-\dfrac{1,78^x}{1,78^x}=0\\ \Leftrightarrow\dfrac{1,78^{2x-2}}{1,78^x}-1=0\\ \Leftrightarrow \dfrac{1,78^{2x-2}}{1,78^x}=1\\ \Leftrightarrow1,78^{2x-2}=1,78^x\\ \Leftrightarrow2x-2=x\\ \Leftrightarrow2x-x=2\\ \Leftrightarrow x=2\)
d) \(5^{\left(x-2\right)\left(x+3\right)}=1\)
\(\Rightarrow5^{\left(x-2\right)\left(x+3\right)}=5^0\)
\(\Leftrightarrow\left(x-2\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x+3=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=2\\x=-3\end{matrix}\right.\)
Vậy \(x_1=-3;x_2=2\)
a. (x-1/2)2=0
=> x-1/2=0
=> x=1/2
b. (x-2)2=1
=> (x-2)2=12=(-1)2
=> x-2=1 hoặc x-2=-1
=> x=3 hoặc x=1
c. (2x-10)3=-8
=> (2x-10)3=(-2)3
=> 2x-10=-2
=> 2x=-2+10
=> 2x=8
=> x=8:2
=> x=4
d. (x+1/2)2=1/16
=> (x+1/2)2=(1/4)2=(-1/4)2
=> x+1/2=1/4 hoặc x+1/2=-1/4
=> x=1/4-1/2 hoặc x=-1/4-1/2
=> x=-1/4 hoặc x=-3/4
(x - 1/2)2 = 0
=> x - 1/2 = 0
x = 1/2
...............Tương tự
`16x^2 = (x+1)^2`
`(4x)^2 - (x+1)^2 =0`
`(4x-x-1)(4x+x+1)=0``
`(3x-1)(5x+1)=0`
`=>[(3x=1),(5x=-1):}`
`=> [(x=1/3),(x=-1/5):}`
Vậy `x in {1/3;-1/5}`