K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 11 2021

\(16a^2b-16ab+4b=4b\left(4a^2-4a+1\right)=4b\left(2a-1\right)^2\\ 5a^3-10a=5a\left(a^2-2\right)=5a\left(a-\sqrt{2}\right)\left(a+\sqrt{2}\right)\\ 3x-3z+x^2-2xz+z^2\\ =3\left(x-z\right)+\left(x-z\right)^2=\left(x-z\right)\left(3+x-z\right)\)

25 tháng 11 2021

\(16a^2b-16ab+4b=4b\left[\left(4a^2\right)-4a+1\right]=4b\left[\left(2a\right)^2-4a+1\right]=4b\left(2a-1\right)^2\)

\(5a^3-10a=5a\left(a^2-2\right)\)

\(3x-3z+x^2-2xz+z^2=\left(3x-3z\right)+\left(x^2-2xz+z^2\right)=3\left(x-z\right)+\left(x-z\right)^2=\left(x-z\right)\left[3+\left(x-z\right)\right]=\left(x-z\right)\left(3+x-z\right)\)

29 tháng 7 2020

4 câu cuối

22 tháng 9 2019

\(A=\frac{x^2+y^2-z^2+2xy}{x^2-y^2+z^2+2xz}\)

       \(=\frac{\left(x^2+2xy+y^2\right)-z^2}{\left(x^2+2xz+z^2\right)-y^2}\)

         \(=\frac{\left(x+y\right)^2-z^2}{\left(x+z\right)^2-y^2}\)

           \(=\frac{\left(x+y+z\right)\left(x+y+z\right)}{\left(x+y+z\right)\left(x-y+z\right)}\)

               \(=\frac{x+y-z}{x-y+z}\)

Ta thay : \(x=0;y=2009;z=2010\) ta được :

\(A=\frac{0+2009-2010}{0-2009+2010}=-\frac{1}{1}=-1\)

Chúc bạn học tốt !!!

22 tháng 9 2019

\(A=\frac{x^2+y^2-z^2+2xy}{x^2-y^2+z^2+2xz}=\frac{\left(x^2+2xy+y^2\right)-z^2}{\left(x^2+2xz+z^2\right)-y^2}=\frac{\left(x+y\right)^2-z^2}{\left(x+z\right)^2-y^2}\)

\(=\frac{\left(x+y+z\right)\left(x+y-z\right)}{\left(x+y+z\right)\left(x-y+z\right)}=\frac{x+y-z}{x-y+z}\)

Thay \(\hept{\begin{cases}x=0\\y=2009\\z=2010\end{cases}}\) vào biểu thức :

\(\Rightarrow A=\frac{0+2009-2010}{0-2009+2010}=-1\)

5 tháng 8 2021

k) = x( 2x - 1 ) - 3y( 2x - 1 ) = ( 2x - 1 )( x - 3y )

l) = x( x - y ) + 5( x - y ) = ( x - y )( x + 5 )

m) = ( a2 - 4a + 4 )( a2 + 4a + 4 ) = ( a - 2 )2( a + 2 )2

n) = y2( x2 - 1 ) - ( x2 - 1 ) = ( x - 1 )( x + 1 )( y - 1 )( y + 1 ) 

q) = 3[ ( x - y )2 - 4z2 ] = 3( x - y - 2z )( x - y + 2z )