Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
P = \(\frac{5.3^{11}+4.3^{12}}{3^9.5^2-3^9.2^2}\)
= \(\frac{\left(5+4.3\right).3^{11}}{3^9.\left(5^2-2^2\right)}\)
=\(\frac{17.3^{11}}{3^9.21}\)
= \(\frac{17.3^2}{7.3}\)
= \(\frac{17.3}{7}=\frac{51}{7}\)
\(\frac{2^{10}\cdot3^{10}-2^{10}\cdot3^9}{2^9\cdot3^{10}}=\frac{2^{10}\cdot3^9\left(3-1\right)}{2^9\cdot3^{10}}=\frac{2^{11}\cdot3^9}{2^9\cdot3^{10}}=\frac{2^2}{3}=\frac{4}{3}\)
a) (111+112+113+.......+118)
=(11+112)+(113+114)+(115+116)+(117+118)
=(11+11.11)+(113+113.11)+(115+115.11)+(117+117.11)
=11.(1+11)+113.(11+1)+115.(1+11)+117.(1+11)
=11.12+113.12+115.12+117.12
=(11+113+115+117).12 chia hết cho 12
=>đpcm
b) =7+72+73+74
=(7+73)+(72+74)
=7.(1+72)+72.(1+72)
=7.50+72.50
=50.(7+72) chia hết cho 50
=> đpcm
a) Ta có:
10^n + 8
= 1000..0 + 8 ( n số 0)
= 100...08 ( n - 1 số 0 )
Tổng các chữ số là: 1 + 0 + .. + 0 + 8 = 9 chia hết cho 9
=>100..00 8 chia hết cho 9
=> 10^n +8 chia hết cho 9
b) \(1531\) và \(2001\) là số lẻ nên tổng của chúng là số chẵn hay tổng của chúng chia hết cho \(2\).
c) Ta có: 10n+53=10.........0+125=100.....0125
\(\Rightarrow\) tổng các chữ số là: 1+0+...+0+1+2+5=9
Vì tổng các chữ số của 10n+53 \(⋮\) 3 và 9 ( \(9⋮\)3 và 9) nên 10n+53 chia hết cho 3 và 9.