![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Cách này cũng đúng nhưng có cách khác nhanh hơn
S = ( 5 + 5^2 + 5^3 + 5^4 ) + .....
Gộp 4 số liên tiếp lại rồi C/M
Chúc học tốt
![](https://rs.olm.vn/images/avt/0.png?1311)
từ (1) và (2)
=> S ⋮5
mình nghĩ hơi thừa chỉ cần từ (1) là đủ rồi
nên đánh (2) vào"=>S⋮5"
Để khi chứng tỏ thì nói "từ (1) và (2) => S ⋮ 65"
1) Ở (1) vô lý nha bạn, tổng S đều có số hạng 5 là sao? số hạng có tận cùng là 5 chứ.
Ok, mik nhận xét thế thôi nhé. Cách trình bày của bạn khá chặt chẽ. Mà bạn viết vào vở thì sử dụng kí hiệu toán học ý, trong toán đừng viết chữ nhiều quá. ( VD: chia hết cho)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có: 52003 + 52002 + 52001
= 52001.(52 + 5 + 1)
= 52001 . 31 chia hết cho 31
![](https://rs.olm.vn/images/avt/0.png?1311)
Mình giúp cho đáp án đúng 100%
5^2003+5^2002+5^2001 chia hết cho 31
=5^2001.(1+5+5^2)
=5^2001.31 chia hết cho 3
hai bài kia tương tự rất dễ đúng ko
Ta có: 52003 + 52002 + 52001
= 52001.(1 + 5 + 25)
= 52001 . 31 chia hết cho 31
Ta có: 1 + 7 + 72 + ...... + 7101
= (1 + 7) + (72 + 73) + ..... + (7100 + 7101)
= 1.8 + 72.(1 + 7) + ..... + 7100.(1 + 7)
= 1.8 + 72.8 + ..... + 7100 . 8
= 8.(1 + 72 + ..... + 7100) chia hết cho 8
![](https://rs.olm.vn/images/avt/0.png?1311)
Câu 1 :
a) Ta có : S=5+52+53+...+52006
5S=52+53+54+...+52007
\(\Rightarrow\)5S-S=(52+53+54+...+52007)-(5+52+53+...+52006)
\(\Rightarrow\)4S=52007-5
\(\Rightarrow S=\frac{5^{2007}-5}{4}\)
b) Ta có : S=5+52+53+...+52006
=(5+53)+(52+54)+...+(52004+52006)
=5(1+52)+52(1+52)+...+52004(1+52)
=5.26+52.26+...+52004.26\(⋮\)26
Vậy S\(⋮\)26
Câu 2 :
Gọi số cần tìm là : a. Điều kiện : a\(\in\)N*.
Vì a chia cho 3 dư 1, chia cho 4 dư 2, chia cho 5 dư 3 và chia cho 6 dư 4 nên ta có ; a-1\(⋮\)3 ; a-2\(⋮\)4 ; a-3\(⋮\)5 và a-4\(⋮\)6
\(\Rightarrow\)a-1+3\(⋮\)3 ; a-2+4\(⋮\)4 ; a-3+5\(⋮\)5 ; a-4+6\(⋮\)6
\(\Rightarrow\)a+2 chia hết cho cả 3, 4, 5 và 6
\(\Rightarrow\)a+2\(\in\)BC(3,4,5,6)
Ta có : 3=3
4=22
5=5
6=2.3
\(\Rightarrow\)BCNN(3,4,5,6)=22.3.5=60
\(\Rightarrow\)BC(3,4,5,6)=B(60)={0;60;120;180;240;300;...}
\(\Rightarrow\)a\(\in\){-2;58;118;178;238;298;358;418;...}
Mà theo đề bài, a nhỏ nhất và chia hết cho 11
\(\Rightarrow\)a=418
Vậy số cần tìm là 418
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 1 : \(A=1+3+3^2+...+3^{31}\)
a. \(A=\left(1+3+3^2\right)+...+3^9.\left(1.3.3^2\right)\)
\(\Rightarrow A=13+3^9.13\)
\(\Rightarrow A=13.\left(1+...+3^9\right)\)
\(\Rightarrow A⋮13\)
b. \(A=\left(1+3+3^2+3^3\right)+...+3^8.\left(1+3+3^2+3^3\right)\)
\(\Rightarrow A=40+...+3^8.40\)
\(\Rightarrow A=40.\left(1+...+3^8\right)\)
\(\Rightarrow A⋮40\)
Bài 2:
Ta có: \(C=3+3^2+3^4+...+3^{100}\)
\(\Rightarrow C=(3+3^2+3^3+3^4)+...+(3^{97}+3^{98}+3^{99}+3^{100})\)
\(\Rightarrow3.(1+3+3^2+3^3)+...+3^{97}.(1+3+3^2+3^3)\)
\(\Rightarrow3.40+...+3^{97}.40\)
Vì tất cả các số hạng của biểu thức C đều chia hết cho 40
\(\Rightarrow C⋮40\)
Vậy \(C⋮40\)
Đặt biểu thức trên là S
\(=(1+5^2) + (5^4+5^6) + ...+ (5^38+5^40)\)
\(= 1(1+5^2) + 5^4(1+5^2) + ..+ 5^{38}(1+5^2)\)
\(= 26. (1+5^4+..+5^38)\)
Mà 26 chia hết cho 26
=> S chia hết cho 26 *đpcm*
Từ mũ 0 đến mũ 40 có 21 số
Khi ghép cặp thì lẻ 1 số
--> 5^2 + 5^4 + ... + 5^40 chia hết 26 lẻ thêm số 1 ở đầu nên suy ra tổng trên không chia hết 26
Vậy đề bài sai