K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 4 2017

a)\(\left|x-2\right|\ge1\)

* x-2 \(\ge\)0 \(\Rightarrow\)x\(\ge\)2

x-2\(\ge\)1 \(\Leftrightarrow\)x\(\ge\)3 ( t/m )

*x-2<0\(\Rightarrow x< 2\)

-x+2 \(\ge1\)\(\Leftrightarrow\) -x\(\ge\)-1 \(\Leftrightarrow x\le1\)(t/m)

Vây bpt co nghiem la x\(\ge\)3;x\(\le1\)

b)\(\left|2-x\right|< 3\)

* \(2-x\ge0\Rightarrow x\le2\)

\(2-x< 3\Leftrightarrow-x< 1\Leftrightarrow x>-1\)(t/m)

*\(2-x< 0\Leftrightarrow-x< -2\Rightarrow x>2\)

\(-2+x< 3\Leftrightarrow x< 5\)(t/m)

Các ý còn lại tương tự nhé ok

4 tháng 5 2016

Ủa,câu hỏi gì kỳ lạ thế? Có trả lời lun ak?

4 tháng 5 2016

giải giúp bạn kia mà ko đăng được nên gửi lên đây rồi gửi link

24 tháng 10 2016

chắc là đúng đó

24 tháng 11 2021

đúng rồi nha bạn

28 tháng 3 2020

bạn làm sai rồi !

\(\Leftrightarrow x\left(3x+2\right)+\left(x+1\right)^2-\left(2x-5\right)\left(2x+5\right)=-12\)

\(\Leftrightarrow3x^2+2x+x^2+2x+1-4x^2+25=-12\)

\(\Leftrightarrow4x+26=-12\)

\(\Leftrightarrow4x=-38\)

\(\Leftrightarrow x=-\frac{19}{2}\)

Vậy tập nghiệm của phương trình là \(S=\left\{-\frac{19}{2}\right\}\)

29 tháng 3 2020

SAI GẦN HẾT

AH
Akai Haruma
Giáo viên
31 tháng 3 2018

Bài 3:

Áp dụng BĐT Cauchy cho các số dương ta có:

\(\frac{1}{x}+\frac{x}{4}\geq 2\sqrt{\frac{1}{4}}=1\)

\(\frac{1}{y}+\frac{y}{4}\geq 2\sqrt{\frac{1}{4}}=1\)

\(\frac{1}{z}+\frac{z}{4}\geq 2\sqrt{\frac{1}{4}}=1\)

Cộng theo vế các BĐT vừa thu được ta có:

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{x+y+z}{4}\geq 3\)

\(\Rightarrow \frac{1}{x}+\frac{1}{y}+\frac{1}{z}\geq 3-\frac{x+y+z}{4}\geq 3-\frac{6}{4}\) (do \(x+y+z\leq 6\) )

\(\Rightarrow \frac{1}{x}+\frac{1}{y}+\frac{1}{z}\geq \frac{3}{2}\) (đpcm)

Dấu bằng xảy ra khi \(x=y=z=2\)

Bài 4:

Áp dụng BĐT Cauchy cho 3 số dương:

\(\frac{x}{y}+\frac{y}{z}+\frac{z}{x}\geq 3\sqrt[3]{\frac{x}{y}.\frac{y}{z}.\frac{z}{x}}=3\sqrt[3]{1}=3\) (đpcm)

Dấu bằng xảy ra khi \(x=y=z\)

20 tháng 5 2018

Chuyển vế->tìm x

1 tháng 4 2016

ko tính ra

1 tháng 4 2016

cái này trong toán violympic tiếng anh cấp tỉnh vong 9 do

12 tháng 11 2019

Áp dụng BĐT Cô - si cho 2 số không âm:

\(\frac{x^6}{y^2}+x^2y^2\ge2\sqrt{\frac{x^8y^2}{y^2}}=2x^4\)

\(\frac{y^6}{x^2}+x^2y^2\ge2\sqrt{\frac{y^8x^2}{x^2}}=2y^4\)

Cộng từng các BĐT trên:

\(\frac{x^6}{y^2}+2x^2y^2+\frac{y^6}{x^2}\ge2x^4+2y^4\)

\(\Leftrightarrow\frac{x^6}{y^2}+\frac{y^6}{x^2}\ge x^4+x^4+y^4+y^4-2x^2y^2\)

\(\Leftrightarrow\frac{x^6}{y^2}+\frac{y^6}{x^2}\ge x^4+y^4+\left(x^2-y^2\right)^2\ge x^4+y^4\)

Vậy \(\frac{x^6}{y^2}+\frac{y^6}{x^2}\ge x^4+y^4\)

(Dấu "="\(\Leftrightarrow\orbr{\begin{cases}x=y\\x=-y\end{cases}}\))