\(13\sqrt{x^2-x^4}+9\sqrt{x^2+x^4}=16\)

giải hộ t với ạ

 

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 9 2017

Cc mày

17 tháng 8 2017

các biểu thức trong căn pt hết về HĐT rồi phá ra là done

24 tháng 7 2017

Cô hoàn chỉnh lại bài làm trên trang diễn đàn toán học:
\(13\sqrt{x^2-x^4}+9\sqrt{x^2+x^4}=16\)
Điều kiện xác định: \(-1\le x\le1\).
Ta có:
\(\left(13\sqrt{x^2-x^4}+9\sqrt{x^2+x^4}\right)^2\)
\(=\left(13\left|x\right|\sqrt{1-x^2}+9\left|x\right|\sqrt{1+x^2}\right)^2\)
\(=x^2\left(\sqrt{13}\sqrt{13}\sqrt{1-x^2}+3\sqrt{3}\sqrt{3}\sqrt{1+x^2}\right)^2\) (*)
Áp dụng bất đẳng thức Bu-nhi-a cho \(\sqrt{13}.\sqrt{13}.\sqrt{1-x^2}+3\sqrt{3}.\sqrt{3}.\sqrt{1+x^2}\) ta có:
(*) \(x^2\left(13+27\right)\left(13-13x^2+3+3x^2\right)=40x^2\left(16-10x^2\right)\)
\(=4.10x^2\left(16-10x^2\right)\le4.\left(\dfrac{10x^2+16-10x^2}{2}\right)^2=16\).
Vì vậy \(VT\le VP\) . Dấu bằng xảy ra khi:
\(10x^2=16-10x^2\Leftrightarrow x^2=\dfrac{4}{5}\)\(\Leftrightarrow x=\pm\dfrac{2\sqrt{5}}{5}\).

24 tháng 7 2017

$13\sqrt{x^2-x^4}+9\sqrt{x^2+x^4}=16$ - Các bài toán và vấn đề về PT - HPT - BPT - Diễn đàn Toán học

20 tháng 10 2017

X=0,894427185

20 tháng 10 2017

tớ bấm máy tính mà

Bài 1: Tính a) \(\sqrt{9-\sqrt{17}}\cdot\sqrt{9+\sqrt{17}}\) b) \(\sqrt{4-\sqrt{7}}-\sqrt{4+\sqrt{7}}\) c) \(\left(\sqrt{3-\sqrt{5}}+\sqrt{3+\sqrt{5}}\right)^2\) d) \(\sqrt{2+\sqrt{3}}\cdot\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{3}}}}\cdot\sqrt{2-\sqrt{2+\sqrt{2+\sqrt{3}}}}\) e) \(\sqrt{\frac{8+\sqrt{15}}{2}}+\sqrt{\frac{8-\sqrt{15}}{2}}\) Bài 2: Giải pt: a) \(\sqrt{x+3-4\sqrt{x-1}}+\sqrt{x+8-6\sqrt{x-1}}=1\) b) \(\sqrt{x+\sqrt{x-11}}+\sqrt{x-\sqrt{x-11}}=4\) c)...
Đọc tiếp

Bài 1: Tính

a) \(\sqrt{9-\sqrt{17}}\cdot\sqrt{9+\sqrt{17}}\)

b) \(\sqrt{4-\sqrt{7}}-\sqrt{4+\sqrt{7}}\)

c) \(\left(\sqrt{3-\sqrt{5}}+\sqrt{3+\sqrt{5}}\right)^2\)

d) \(\sqrt{2+\sqrt{3}}\cdot\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{3}}}}\cdot\sqrt{2-\sqrt{2+\sqrt{2+\sqrt{3}}}}\)

e) \(\sqrt{\frac{8+\sqrt{15}}{2}}+\sqrt{\frac{8-\sqrt{15}}{2}}\)

Bài 2: Giải pt:

a) \(\sqrt{x+3-4\sqrt{x-1}}+\sqrt{x+8-6\sqrt{x-1}}=1\)

b) \(\sqrt{x+\sqrt{x-11}}+\sqrt{x-\sqrt{x-11}}=4\)

c) \(\sqrt{x+2+3\sqrt{2x-5}}+\sqrt{x-2-\sqrt{2x-5}}=2\sqrt{2}\)

d) \(\sqrt{x-4}+\sqrt{6-x}=x^2-10x+27\)

e) \(\sqrt{2x+1}+\sqrt{17-2x}=x^4-8x^3+17x^2-8x+22\)

f) \(\sqrt{x+x^2}+\sqrt{x-x^2}=x+1\)

g) \(\sqrt{3x^2+12x+16}+\sqrt{y^2-4y+13}=5\)

Bài 3: Cho biểu thức:

P= \(\frac{\sqrt{x+4\sqrt{x-4}}+\sqrt{x-4\sqrt{x-4}}}{\sqrt{\frac{16}{x^2}-\frac{8}{x}+1}}\)

a) Rút gon P

b) Tìm x để P đạt GTNN, tìm GTNN đó.

c) Tìm x \(\in\) Z để P \(\in\) Z

@Nguyễn Văn Đạt@Akai Haruma Help me please~~~~ Giải thích cẩn thân hộ với.

3
21 tháng 7 2019
https://i.imgur.com/FpJWAoR.jpg

Tag nhầm người rồi anh ơi !! Em mới lớp 7 không biết mấy cái này

AH
Akai Haruma
Giáo viên
28 tháng 10 2019

Em muốn mọi người giải bài nhanh nhưng đến đề bài em cũng chưa ghi đủ?

28 tháng 10 2019

à vâng ạ