Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{49.51}\)
\(=\frac{1}{2}.\left(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{49.51}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{51}\right)\)
\(=\frac{1}{2}.\left(\frac{51}{153}-\frac{3}{153}\right)\)
\(=\frac{1}{2}.\frac{48}{153}\)
\(=\frac{24}{153}\)
\(\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{49.51}\)
\(=\frac{1}{2}.\left(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{49.51}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{49}-\frac{1}{51}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{51}\right)\)
\(=\frac{1}{2}.\left(\frac{17}{51}-\frac{1}{51}\right)\)
\(=\frac{1}{2}.\frac{16}{51}=\frac{8}{51}\)
a) \(\frac{7^3.5^8}{49.25^4}=\frac{7^3.5^8}{7^2.\left(5^2\right)^4}=7.\frac{5^8}{5^8}=7\)
b) \(\frac{3^9.25.5^3}{15.625.3^8}=\frac{3.3^8.5^2.5^3}{3.5.5^4.3^8}=\frac{5^5}{5^5}=1\)
c) Đề hơi sai roi bạn oi
d) \(\left(\frac{2}{5}-\frac{1}{2}\right)^2+\left(\frac{1}{2}+\frac{3}{5}\right)^2=\left(\frac{-1}{10}\right)^2+\left(\frac{11}{10}\right)^2=\frac{1}{100}+\frac{121}{100}=\frac{61}{50}\)
a) \(\frac{7^3.5^8}{49.25^4}=\frac{7^3.5^8}{7^2.5^8}=7\)
b) \(\frac{3^9.25.5^3}{15.625.3^8}=\frac{3^9.5^2.5^3}{3.5.5^4.3^8}=\frac{3^9.5^5}{3^9.5^5}=1\)
c) \(\frac{2^{50}.3^{61}+2^{90}.3^{16}}{2^{51}.3^{61}+2^{91}.3^{16}}=\frac{2^{50}.3^{16}\left(3^{45}+2^{40}\right)}{2^{51}.3^{16}\left(3^{45}+2^{40}\right)}=\frac{1}{2}\)
d) \(\left(\frac{2}{5}-\frac{1}{2}\right)^2+\left(\frac{1}{2}+\frac{3}{5}\right)^2\)
\(=\left(\frac{-1}{10}\right)^2+\left(\frac{11}{10}\right)^2\)
\(=\frac{1}{100}+\frac{121}{100}=\frac{122}{100}=\frac{61}{50}\)
\(B=\frac{1-\frac{1}{\sqrt{49}}+\frac{1}{49}-\frac{1}{\left(7\sqrt{7}\right)^2}}{\frac{\sqrt{64}}{2}-\frac{4}{7}+\frac{2^2}{7^2}-\frac{4}{343}}\)
\(B=\frac{1-\frac{1}{7}+\frac{1}{49}-\frac{1}{343}}{\frac{8}{2}-\frac{4}{7}+\frac{4}{49}-\frac{4}{343}}\)
\(B=\frac{\frac{343}{343}-\frac{49}{343}+\frac{7}{343}-\frac{1}{343}}{4-\frac{4}{7}+\frac{28}{343}-\frac{4}{343}}\)
\(B=\frac{\frac{300}{343}}{\frac{28}{7}-\frac{4}{7}+\frac{24}{343}}\)
\(B=\frac{\frac{300}{343}}{\frac{24}{7}+\frac{24}{343}}\)
\(B=\frac{\frac{300}{343}}{\frac{1323}{343}+\frac{24}{343}}\)
\(B=\frac{300}{343}:\frac{1347}{343}\)
\(B=\frac{100}{449}\)
\(A=\frac{2^{12}.3^5-4^6.9^2}{\left(2^2.3\right)^6+8^4.3^5}-\frac{5^{10}.7^3-25^5.49^2}{\left(125.7\right)^3+5^9.14^3}\)
\(A=\frac{2^{12}.3^5-2^{12}.3^6}{2^{12}.3^6+2^{12}.3^5}-\frac{5^{10}.7^3-5^{10}.7^6}{5^9.7^3+5^9.2^3.7^3}\)
\(A=\frac{2^{12}.3^5\left(1-3\right)}{2^{12}.3^5.\left(3+1\right)}-\frac{5^{10}.7^3.\left(1-7^3\right)}{5^9.7^3.\left(1+8\right)}\)
\(A=\frac{-2}{4}-\frac{5.\left(-342\right)}{9}\)
\(A=\frac{-1}{2}+\frac{1710}{9}\)
\(A=\frac{-1}{2}+190\)
\(A=\frac{-1}{2}+\frac{380}{2}\)
\(A=\frac{379}{2}\)
(Lần sau, "bé" nhớ sử dụng công cụ công thức trực quan nhé, dịch của "bé" mình mệt ghê :V)
a,
\(\frac{x+1}{55}+\frac{x+3}{53}+\frac{x+5}{51}=\frac{x+7}{49}+\frac{x+9}{47}+\frac{x+11}{45}\\ \Leftrightarrow\frac{x+1}{55}+1+\frac{x+3}{53}+1+\frac{x+5}{51}+1=\frac{x+7}{49}+1+\frac{x+9}{47}+1+\frac{x+11}{45}+1\\ \Leftrightarrow\frac{x+56}{55}+\frac{x+56}{53}+\frac{x+56}{51}=\frac{x+56}{49}+\frac{x+56}{47}+\frac{x+56}{45}\\ \Leftrightarrow\left(x+56\right)\left(\frac{1}{55}+\frac{1}{53}+\frac{1}{51}-\frac{1}{49}-\frac{1}{47}-\frac{1}{45}\right)=0\)
And... u know dat right? ( ͡~ ͜ʖ ͡°)
b,
\(\frac{x+29}{31}-\frac{x+27}{33}=\frac{x+17}{43}-\frac{x+15}{45}\\ \Leftrightarrow\frac{x+29}{31}+1-\frac{x+27}{33}+1=\frac{x+17}{43}+1-\frac{x+15}{45}+1\\ \Leftrightarrow\frac{x+60}{31}-\frac{x+60}{33}=\frac{x+60}{43}-\frac{x+60}{45}\\ \Leftrightarrow\left(x+60\right)\left(\frac{1}{31}-\frac{1}{33}-\frac{1}{43}+\frac{1}{45}\right)=0\)
Ok, phần còn lại là của bạn nhé. :)
Chúc bạn học tốt nha.
\(1.3+3.5+5.7+...+49.51\)
\(=1.\left(1+2\right)+3.\left(3+2\right)+5\left(5+2\right)+...+49\left(49+2\right)\)
\(=1^2+1.2+3^2+3.2+5^2+5.2+...+49^2+49.2\)
\(=\left(1^2+3^2+5^2+...+49^2\right)+2\left(1+3+5+...+49\right)\)
Có: \(1^2+3^2+5^2+...+49^2\)
\(=\left(1^2+2^2+3^2+...+49^2\right)-\left(2^2+4^2+...+48^2\right)\)
\(=\left(1^2+2^2+3^2+...+49^2\right)-2^2\left(1^2+2^2+3^2+...+24^2\right)\)
\(=\frac{49\left(49+1\right)\left(2.49+1\right)}{6}-4.\frac{24\left(24+1\right)\left(2.24+1\right)}{6}\)
= 40425 - 19600 =20825
\(1+3+5+...+49=\frac{\left(49+1\right)\left[\left(49-1\right):2+1\right]}{2}=625\)
=> \(1.3+3.5+5.7+...+49.51\)
\(=\left(1^2+3^2+5^2+...+49^2\right)+2\left(1+3+5+...+49\right)\)
\(=20825+625.2=22075\)