1+32+34+...+3100 chia hết cho 82

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 12 2021

S = 1 + 3 + 32 + 33 + ... + 38 + 39

S = ( 1 + 3 ) + ( 32 + 33 ) + ... + ( 38 + 39 )

S = 4 + ( 1 . 32 + 3 .32 ) + .. + ( 1. 38 + 3 . 38 ) 

S = 4 + 4 .32 + .. + 4 . 38

S = 4 ( 1 + 32 + ... + 38 ) \(⋮\)4

Vậy S \(⋮\)4 ( đpcm )

Học tốt

#Dương

S = 1 + 3 + 3+ 3+ 34+35+ 3+ 3+ 38+39

S=( 1 + 3)+(3+ 33)+(34+35)+(3+ 37)+(38+39)

s=4+32.(3+1)+32.(3+1)+34.(3+1)+36.(3+1)+38.(3+1)

S=4.(1+32+34+36+38)

CHIA HẾT CHO 4

2 tháng 2 2020

đỉ mẹ, đỉ má, cái lồn, con cặc.

a: \(S=\left(1+3\right)+3^2\left(1+3\right)+3^4\left(1+3\right)+...+3^8\left(1+3\right)\)

\(=4\left(1+3^2+3^4+...+3^8\right)⋮4\)

b: \(S=\left(1+2\right)+2^2\left(1+2\right)+...+2^8\left(1+2\right)\)

\(=3\left(1+2^2+...+2^8\right)⋮3\)

28 tháng 7 2018

\(A=3^1+3^2+3^3+...+3^8\)

\(=\left(3^1+3^2\right)+\left(3^3+3^4\right)+...+\left(3^7+3^8\right)\)

\(=1\left(3^1+3^2\right)+3^2\left(3^1+3^2\right)+...+3^6\left(3^1+3^2\right)\)

\(=1.12+3^2.12+...+3^6.12\)

\(=12.\left(1+3^2+...+3^6\right)⋮12\)

Ta có: \(7^6+7^5-7^4\)

\(=7^4\left(7^2+7-1\right)\)

\(=7^4.55\)

\(=7^4.5.11⋮11\)

29 tháng 7 2018

BAN CO THe chi cach giai bai nay khong cach lam tri tiet minh 0 hieu

6 tháng 1 2017

s=2+2^2+2^3+.....+2^100

s=2.(1+2+2^2+2^3)+......+2^97.(1+2+2^2+2^3)

s=2.15+....+2^97.15

s=15.(2+....+2^97)

=> s chia het cho 15

6 tháng 1 2017

a=3+3^2+3^3+....+3^20

a=3.(1+3)+......+3^19.(1+3)

a=3.4+.....+3^19.4

a=4.(3+.....+3^19)

vay a chia het cho 4

11 tháng 10 2018

32+33+34+...+3100

=9+9.3+9.32+...+9.398

=>tổng trên chia hết cho 9

11 tháng 10 2018

còn câu dưới thì sao bạn

8 tháng 11 2016

Ta có :

\(C+3^{101}=\left(1+3+3^2\right)+3^3\left(1+3+3^2\right)+.....+3^{96}\left(1+3+3^2\right)+3^{99}\left(1+3+3^2\right)\)

\(C+3^{101}=13+3^3.13+.....+3^{96}.13+3^{99}.13\)

=> C+3101 chia hết cho 13

Mặt khác 3101 không chia hết cho 13

=> C không chia hết cho 13

8 tháng 11 2016

Ta có :

\(C=\left(1+7+7^2\right)+7^3\left(1+7+7^2\right)+....+7^{27}\left(1+3+3^2\right)+7^{30}\)

\(C=57+7^3.57+....+7^{27}.57+7^{30}\)

Mà 7^30 không chia hết cho 57

=> C không chia hết cho 57

26 tháng 8 2015

1) Đặt 3+3^2+3^3+ ... +3^99+3^100 là A

Ta có:

A = 3+3^2+3^3+ ... +3^99+3^100

A = (3+3^2)+(3^3+3^4)+ ... +(3^99+3^100)

A = 3.4 + 3^3.4 + ... + 3^99.4

A = 4.(3+3^3+...+3^99)

=> A chia hết cho 4

2) Để 35x7y chia hết cho 2; 5 => y = 0

Để 35x70 chia hết cho 3 => (3+5+x+7+0) chia hết cho 3 => (15+x) chia hết cho 3

=> x = 0;3;6;9

Vậy y = 0; x = 0; 3; 6; 9