Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(C=\left(2018^{2019}+2018^{2018}+...+2018^2+2018\right)2017+1\)
\(=\left(2018^{2019}+2018^{2018}+...+2018^2+2018\right)2018-\left(2018^{2019}+2018^{2018}+...+2018\right)-1\)
\(=\left(2018^{2020}+2018^{2019}+...+2018^3+2018^2\right)-\left(2018^{2019}+2018^{2018}+...+2018^2+2018\right)+1\)\(=2018^{2020}-2018+1\)
\(=2018^{2020}-2017\)
\(3A=1+\frac{1}{3}+...+\frac{1}{3^{2017}}\)
\(3A-A=\left(1+\frac{1}{3}+...+\frac{1}{3^{2017}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2018}}\right)\)
\(2A=1-\frac{1}{3^{2018}}\)
\(A=\frac{1-\frac{1}{3^{2018}}}{2}\)
đặt \(A=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2018}}\)
\(3A=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2017}}\)
\(3A-A=\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2017}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2018}}\right)\)
\(2A=1-\frac{1}{3^{2018}}\)
\(A=\frac{1-\frac{1}{3^{2018}}}{2}\)
đặt \(B=1+5+5^2+...+5^{2018}\)
\(5B=5+5^2+5^3+...+5^{2019}\)
\(5B-B=\left(5+5^2+5^3+...+5^{2019}\right)-\left(1+5+5^2+...+5^{2018}\right)\)
\(4B=5^{2019}-1\)
\(B=\frac{5^{2019}-1}{4}\)
\(S=1+3+3^2+3^3+3^4+...+3^{2018}\)
Đặt \(3S=3\left(1+3+3^2+3^3+3^4+...+3^{2018}\right)\)
=> \(3S=3+3^2+3^3+3^4+3^5+...+3^{2019}\)
=> \(3S-S=\left(3+3^2+3^3+3^4+3^5+3^{2019}\right)-\left(1+3+3^2+3^3+3^4+...+3^{2018}\right)\)=> \(2S=3^{2019}-1\)
=> \(2S-3^{2018}=3^{2019}-1-3^{2018}\)
Vậy \(A=3^{2019}-1-3^{2018}\)
_Chúc bạn học tốt_
b/ Ta có :
\(M=\frac{3^2}{2.5}+\frac{3^2}{5.8}+....+\frac{3^2}{98.101}\)
\(=3\left(\frac{3}{2.5}+\frac{3}{5.8}+....+\frac{3}{98.101}\right)\)
\(=3\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+....+\frac{1}{98}-\frac{1}{101}\right)\)
\(=3\left(\frac{1}{2}-\frac{1}{101}\right)\)
\(=3.\frac{99}{202}\)
\(=\frac{297}{202}\)
Vậy....
Bài 3:
\(\Leftrightarrow3^{2x+6}=3\)
=>2x+6=1
=>2x=-5
hay x=-5/2
Gọi A=1+3+32+...+32018
Ta có 3A = 3+...32019
=>2A = -1 + 32019
=> A = (32019-1)/2
Gọi \(A=3^1+3^2+3^3+3^4+....+3^{2018}.\)
\(\Rightarrow3A=3^2+3^3+3^4+3^5+...+3^{2019}\)
\(3A-A=\left(3^2+3^3+3^4+3^5+...+2^{2019}\right)-\left(3^1+3^2+3^3+3^4+...+3^{2018}\right)\)
\(2A=3^{2019}-3\)
\(A=\frac{3^{2019}-3}{2}\)
\(\Rightarrow1+3^1+3^2+3^3+3^4+....+3^{2018}=1+\frac{3^{2019}-3}{2}\)
> Chúc bạn học tốt <