K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 8 2015

Tổng trên có 60 số hạng nhóm 30 số vào 1 nhóm ta được:

1/31 + 1/32 + 1/33 +......+ 1/60 > 1/60 . 30 = 1/2

1/61 + 1/62 + 1/63 +......+ 1/90 > 1/90 . 30 = 1/3

=> 1/31 + 1/32 + 1/33 +.......+ 1/90 > 1/2 + 1/3

=> 1/31 + 1/32 + 1/33 +.....+ 1/90 > 5/6

25 tháng 8 2020

1/31+1/32 <+1/89+1/90  5/6

Tít cho ik nhá

25 tháng 8 2020

Đặt \(A=\frac{1}{31}+\frac{1}{32}+...+\frac{1}{89}+\frac{1}{90}=\left(\frac{1}{31}+\frac{1}{32}+...+\frac{1}{60}\right)+\left(\frac{1}{61}+\frac{1}{62}+...+\frac{1}{90}\right)\)

                         60 số hạng                                                  30 số hạng                                                  30 số hạng

\(>\left(\frac{1}{60}+\frac{1}{60}+...+\frac{1}{60}\right)+\left(\frac{1}{90}+\frac{1}{90}+...+\frac{1}{90}\right)\)

\(=30\times\frac{1}{60}+30\times\frac{1}{90}=\frac{1}{2}+\frac{1}{3}=\frac{5}{6}\)

=> \(A>\frac{5}{6}\)

Vậy \(\frac{1}{31}+\frac{1}{32}+...+\frac{1}{90}>\frac{5}{6}\)

18 tháng 8 2015

\(Q=\frac{1}{31}+\frac{1}{32}+...+\frac{1}{90}=\left(\frac{1}{31}+\frac{1}{32}+...+\frac{1}{60}\right)+\left(\frac{1}{61}+\frac{1}{62}+....+\frac{1}{90}\right)\)

\(Q>\left(\frac{1}{60}+\frac{1}{60}+\frac{1}{60}+...+\frac{1}{60}\right)+\left(\frac{1}{90}+\frac{1}{90}+....+\frac{1}{90}\right)\)

\(=\frac{1}{60}.30+\frac{1}{90}.30=\frac{1}{2}+\frac{1}{3}=\frac{5}{6}\)

Vậy Q > 5/6

21 tháng 7 2016

A = 1/31 + 1/32 + 1/33 + ... + 1/89 + 1/90 ..... 5/6

A = 5/6 = 1/2 + 1/3

Ta đặt : B = 1/31 + 1/32 + 1/33 + ... + 1/60 ( 30 phân số )

            C = 1/61 + 1/62 + 1/63 + .... + 1/90 ( 30 phân số )

Ta có : B = 1/31 + 1/32 + 1/33 + ... + 1/60 > 1/60 + 1/60 + 1/60 + ... + 1/60 = 30 x 1/60 = 1/2

           C = 1/61 + 1/62 + 1/63 + ... + 190 > 1/90 + 1/90 + 1/90 + .... + 1/90 = 30 x 1/90 = 1/3

Vì A = B + C > 1/2 + 1/3 = 5/6 nên 1/31 + 1/32 + 1/33 + .. + 1/89 + 1/90 > 5/6

21 tháng 7 2016

Đặt \(A=\frac{1}{31}+\frac{1}{32}+....+\frac{1}{60}=\frac{1}{60}.30=\frac{1}{2}\)

Đặt \(B=\frac{1}{61}+\frac{1}{62}+...+\frac{1}{90}=\frac{1}{90}.30=\frac{1}{3}\)

Ta có: \(Q>A+B\Rightarrow Q>\frac{1}{2}+\frac{1}{3}=\frac{5}{6}\)

Vậy \(Q=\frac{1}{31}+\frac{1}{32}+...+\frac{1}{90}>\frac{5}{6}\) (đpcm)

Ủng hộ mik nha??

11 tháng 8 2015

A = 1/31 + 1/32 + 1/33 + ... + 1/89 + 1/90 ..... 5/6

A = 5/6 = 1/2 + 1/3

Ta đặt : B = 1/31 + 1/32 + 1/33 + ... + 1/60 ( 30 phân số )

            C = 1/61 + 1/62 + 1/63 + .... + 1/90 ( 30 phân số )

Ta có : B = 1/31 + 1/32 + 1/33 + ... + 1/60 > 1/60 + 1/60 + 1/60 + ... + 1/60 = 30 x 1/60 = 1/2

           C = 1/61 + 1/62 + 1/63 + ... + 190 > 1/90 + 1/90 + 1/90 + .... + 1/90 = 30 x 1/90 = 1/3

Vì A = B + C > 1/2 + 1/3 = 5/6 nên 1/31 + 1/32 + 1/33 + .. + 1/89 + 1/90 > 5/6

11 tháng 7 2016

A=1/31+1/32+....+1/89+1/90>5/6 -vì dãy tổng A gồm 60 phân số mà phân số 1/60 nằm ở giữa (số tt 30) 
xét :1/59+1/61>2/60 (1/59+1/61=(59+61)/59*61=120/(60^2-1)>12... 
tương tự:1/58+1/62>2/60 
:1/57+1/63 >2/60 cứ như vậy có tới 29 cặp lẻ 1/90 và số 1/60 mà ta dùng so sánh 
do đó khi cộng vào ta được A.>59/60>50/60=5/6 đpcm

25 tháng 12 2016

Đã trả lời ở đâu đó rồi (chi tiết)

-Nhận xét, phân tích bài toán:

So sánh với (5/6) =>rút gọn vế trái thành một phân số có mẫu số bằng 6

=> ta chọn số hạng có mẫu số là bội số của 6 để gom lại.

\(\frac{1}{31}+..+\frac{1}{36}>\frac{1}{36}+..+\frac{1}{36}=\frac{6}{36}=\frac{1}{6}\)

\(\frac{1}{37}+...+\frac{1}{42}>\frac{1}{42}+..+\frac{1}{42}=\frac{6}{42}=\frac{1}{7}\)

..........

\(\frac{1}{83}+..+\frac{1}{90}=\frac{1}{90}+...+\frac{1}{90}=\frac{6}{90}=\frac{1}{15}\)

Như vậy sau bước 1 rút vê trái về còn \(\frac{1}{6}+\frac{1}{7}...+\frac{1}{15}\)

Rút gọn tiếp vẫn theo cách trên

\(\frac{1}{7}+..+\frac{1}{12}>\frac{1}{12}+..+\frac{1}{12}=\frac{6}{12}=\frac{3}{6}\)

\(\frac{1}{13}+\frac{1}{14}+\frac{1}{15}>\frac{1}{18}+\frac{1}{18}+\frac{1}{18}=\frac{1}{6}\)

\(VT=\left(\frac{1}{31}+..+\frac{1}{90}\right)>\left(\frac{1}{6}+\frac{3}{6}+\frac{1}{6}\right)=\frac{5}{6}=VP\)

25 tháng 12 2016

Hay thật!