13. Cho hình thang cân ABCD (AB // CD), E là giao điểm của hai đườ...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 9 2016

Xét ΔABD và ΔBAC có:

AB: cạnh chung

^A=^B(gt)

AD=BC(gt)

=>ΔABD = ΔBAC(c.g.c)

=>^ABD=^BAC

=>ΔEAB cân tại E

=>AE=EB

Có: AC=AE+EC

       BD=BE+ED

Mà AC=BD(gt); AE=BE(cmt)

=>ED=EC

9 tháng 9 2016

AD = BC (gt)

AC = BD (gt)

 DC chung

Nên  ∆ADC =  ∆BCD (c.c.c)

Suy ra \(\widehat{C_1}=\widehat{D_1}\)

Do đó tam giác ECD cân tại E, nên EC = ED

Ta lại có: AC = BD suy ra EA = EB

9 tháng 9 2016

Do ABCD là hình thang cân nên AD = BC, AC = BC, 

Xét hai tam giác ADC và BCD, ta có: 

         AD = BC (gt)

        AC = BD (gt)

         DC chung

Nên  ∆ADC =  ∆BCD (c.c.c)

Suy ra 

Do đó tam giác ECD cân tại E, nên EC = ED

Ta lại có: AC = BD suy ra EA = EB

Chú ý: Ngoài cách chứng minh  ∆ADC =  ∆BCD (c.c.c) ta còn có thể chứng minh  ∆ADC =  ∆BCD (c.g.c) như sau:

AD = BC,  , DC là cạnh chung.

9 tháng 9 2016

Chứng Minh;

Xét tam giác ADC và BCD, có:

AD = BC ( gt )

DC là cạnh chung

AC = BD ( gt )

\(\Rightarrow\)Tam giác ADC = BCD ( c.c.c )

\(\Rightarrow\)Â1 = B1 ( 2 góc Tương ứng )

Mà Góc DAB= CBA ( gt )

\(\Rightarrow\)Â2= B2 ( gt )

\(\Rightarrow\)Tam giác AEB cân tại E

nên EA=EB

mà AC=BD

\(\Rightarrow\)EC=ED A B D C 1 2 2 1 E

9 tháng 9 2016

bai-12-toan-hinh-hoc-8.jpg?w=570

ABCD (AB // DC) LÀ Hình thang cân ta có :

\(\widehat{D}=\widehat{C};AD=BC\)

Xét Δ AED và Δ BFC ta có :

\(\widehat{AED}=\widehat{BFC}=90^o\)

\(\widehat{C}=\widehat{D}=\left(cmt\right)\)

\(AD=BC\left(cmt\right)\)

= > Δ AED = Δ BFC (cạnh huyền – góc nhọn)

= > DE = CF

9 tháng 9 2016

mình thấy đúng mà =)))

5 tháng 12 2017

a. Xét tam giác HCD cóHN=DN;HM=CM 

=> MN là đường trung bình của tam giác HCD => MN//DC

=> DNMC là hình thang

b. Ta có MN là đường trung bình của tam giác HCD => MN=1/2CD

Mà AB=1/2CD => AB =MN

Do MN//CD và AB//CD => AB//MN

Xét tứ giác ABMN có AB//MN; AB=MN

=> ABMN là hình bình hành

c.Ta có MN//CD mà CD vg AD

=> MN vg AD

Xét tam giác ADM có DH và MN là 2 đường cao của tam giác 

Mà chúng cắt nhau tại N nên N là trực tâm của tam giác ADM

=> AN là đường cao của tam giác ADM

=> AN vg DM

Do ABMN là hình bình hành nên AN//BM

=> BM vg DM => BMD =90*

21 tháng 4 2017

Bài giải:

Do ABCD là hình thang cân nên AD = BC, AC = BC, ˆD=ˆCD^=C^

Xét hai tam giác ADC và BCD, ta có:

AD = BC (gt)

AC = BD (gt)

DC chung

Nên ∆ADC = ∆BCD (c.c.c)

Suy ra ˆC1=ˆD1C1^=D1^

Do đó tam giác ECD cân tại E, nên EC = ED

Ta lại có: AC = BD suy ra EA = EB

Chú ý: Ngoài cách chứng minh ∆ADC = ∆BCD (c.c.c) ta còn có thể chứng minh ∆ADC = ∆BCD (c.g.c) như sau:

AD = BC, ˆD=ˆCD^=C^ , DC là cạnh chung.

30 tháng 12 2018

Do ABCD là hình thang cân nên:

    AD = BC;

    AC = BD;

Xét hai tam giác ADC và BCD, ta có:

    AD = BC (gt)

    AC = BD (gt)

    DC cạnh chung

⇒ ΔADC = ΔBCD (c.c.c)

Giải bài 13 trang 74 Toán 8 Tập 1 | Giải bài tập Toán 8

⇒ ΔECD cân tại E

⇒ EC = ED.

Mà AC = BD

⇒ AC – EC = BD – ED

hay EA = EB.

Vậy EA = EB, EC = ED.

31 tháng 12 2018

Do ABCD là hình thang cân nên:

    AD = BC;

    AC = BD;

Xét hai tam giác ADC và BCD, ta có:

    AD = BC (gt)

    AC = BD (gt)

    DC cạnh chung

⇒ ΔADC = ΔBCD (c.c.c)

⇒ ΔECD cân tại E

⇒ EC = ED.

Mà AC = BD

⇒ AC – EC = BD – ED

hay EA = EB.

Vậy EA = EB, EC = ED.

29 tháng 5 2018

Giải bài 13 trang 74 Toán 8 Tập 1 | Giải bài tập Toán 8

Do ABCD là hình thang cân nên:

    AD = BC;

    AC = BD;

Xét hai tam giác ADC và BCD, ta có:

    AD = BC (gt)

    AC = BD (gt)

    DC cạnh chung

⇒ ΔADC = ΔBCD (c.c.c)

Giải bài 13 trang 74 Toán 8 Tập 1 | Giải bài tập Toán 8

⇒ ΔECD cân tại E

⇒ EC = ED.

Mà AC = BD

⇒ AC – EC = BD – ED

hay EA = EB.

Vậy EA = EB, EC = ED.

9 tháng 9 2016

fdgfdgdfgdf

k với đòi kết bạn mà

30 tháng 12 2018

Vì hình thang ABCD cân

    AD = BC;

    Ĉ = D̂

Xét hai tam giác vuông AED và BFC có:

    AD = BC

    Ĉ = D̂

⇒ ΔAED = ΔBFC (cạnh huyền – góc nhọn)

⇒ DE = CF.

22 tháng 6 2018

Do ABCD là hình thang cân nên AD = BC, AC = BC, 
Xét hai tam giác ADC và BCD, ta có: 
         AD = BC (gt)
        AC = BD (gt)
         DC chung
Nên  ∆ADC =  ∆BCD (c.c.c)
Suy ra 
Do đó tam giác ECD cân tại E, nên EC = ED
Ta lại có: AC = BD suy ra EA = EB
Chú ý: Ngoài cách chứng minh  ∆ADC =  ∆BCD (c.c.c) ta còn có thể chứng minh  ∆ADC =  ∆BCD (c.g.c) như sau:
AD = BC,  , DC là cạnh chung.

30 tháng 12 2018

Do ABCD là hình thang cân nên:

    AD = BC;

    AC = BD;

Xét hai tam giác ADC và BCD, ta có:

    AD = BC (gt)

    AC = BD (gt)

    DC cạnh chung

⇒ ΔADC = ΔBCD (c.c.c)

Giải bài 13 trang 74 Toán 8 Tập 1 | Giải bài tập Toán 8

⇒ ΔECD cân tại E

⇒ EC = ED.

Mà AC = BD

⇒ AC – EC = BD – ED

hay EA = EB.

Vậy EA = EB, EC = ED.