Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+\frac{1}{15}+...+\frac{1}{5050}=2\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+...+\frac{1}{10100}\right)\)
\(=2\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{100.101}\right)\)
\(=2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{100}-\frac{1}{101}\right)=2.\frac{99}{202}=\frac{99}{101}\)
Đặt A = 1/3+1/6+1/10+1/15+...+1/5050
A : 2 ta có : 1/6+1/12+1/20+1/30+...+1/10100
A: 2 = 1/2x3+1/3x4+1/4x5+1/5x6+..... + 1/ 100 x 101
A: 2 = 1/2-1/3+1/3-1/4+1/4-1/5+1/5-1/6+...1/100-1/101
Rút gọn ta được :
A: 2 = 1/2-1/101
A: 2 = 99/202
A = 99/202x2 = 99 / 101
\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+.....+\frac{1}{105}\)
=\(\frac{2}{6}+\frac{2}{12}+\frac{1}{20}+.....+\frac{2}{210}\)
= \(2\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+.....+\frac{1}{14.15}\right)\)
= \(2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+....+\frac{1}{14}-\frac{1}{15}\right)\)
= \(2\left(\frac{1}{2}-\frac{1}{15}\right)\)
= 2 . \(\frac{13}{30}\)
= \(\frac{13}{15}\)
dạng chuỗi nha bạn
ko hiểu thì tích cho mình là mình giải cho
\(\frac{1}{2.3}=\frac{1}{2}-\frac{1}{3}\) trong đó 3 = x ; 2 = x - 1
\(\frac{1}{\left(x-1\right)x}=\frac{1}{x-1}-\frac{1}{x}\)
ĐẶt A = \(\frac{1}{3}+\frac{1}{6}+...+\frac{2}{x\left(x-1\right)}-\frac{2007}{2009}\)
A = \(\frac{2}{6}+\frac{2}{12}+\frac{2}{30}\cdot\cdot\cdot+\frac{2}{x\left(x-1\right)}-\frac{2007}{2009}\)
A = \(\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+..+\frac{2}{\left(x-1\right)x}-\frac{2007}{2009}\)
A = \(\frac{1}{2}-\frac{1}{3}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x-1}-\frac{1}{x}-\frac{2007}{2009}\)
A \(=\frac{1}{2}-\frac{1}{x}-\frac{2007}{2009}\)
A = \(\dfrac{1}{3}\) + \(\dfrac{1}{6}\) + \(\dfrac{1}{10}\)+.....+ \(\dfrac{1}{105}\)
A \(\times\) \(\dfrac{1}{2}\) = \(\dfrac{1}{2}\) \(\times\) ( \(\dfrac{1}{3}\) + \(\dfrac{1}{6}\) + \(\dfrac{1}{10}\) +.....+ \(\dfrac{1}{105}\))
A \(\times\) \(\dfrac{1}{2}\) = \(\dfrac{1}{6}\) + \(\dfrac{1}{12}\) + \(\dfrac{1}{20}\)+.....+ \(\dfrac{1}{210}\)
A \(\times\) \(\dfrac{1}{2}\) = \(\dfrac{1}{2\times3}\) + \(\dfrac{1}{3\times4}\)+ \(\dfrac{1}{4\times5}\)+....+\(\dfrac{1}{14\times15}\)
A \(\times\) \(\dfrac{1}{2}\) = \(\dfrac{1}{2}-\dfrac{1}{3}\) + \(\dfrac{1}{3}\) - \(\dfrac{1}{4}\) + \(\dfrac{1}{4}\) - \(\dfrac{1}{5}\)+.....+ \(\dfrac{1}{14}\) - \(\dfrac{1}{15}\)
A \(\times\) \(\dfrac{1}{2}\) = \(\dfrac{1}{2}\) - \(\dfrac{1}{15}\)
A \(\times\) \(\dfrac{1}{2}\) = \(\dfrac{13}{30}\)
A = \(\dfrac{13}{30}\) : \(\dfrac{1}{2}\)
A = \(\dfrac{13}{15}\)