Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(A=\frac{1}{1\text{x}2\text{x}3}+\frac{1}{2\text{x}3\text{x}4}+\frac{1}{3\text{x}4\text{x}5}+...+\frac{1}{18\text{x}19\text{x}20}< \frac{1}{4}\)
\(A=1-\frac{1}{2}-\frac{1}{3}+\frac{1}{2}-\frac{1}{3}-\frac{1}{4}+...+\frac{1}{18}-\frac{1}{19}+\frac{1}{20}< \frac{1}{4}\)
\(A=1+\left(\frac{1}{2}-\frac{1}{2}\right)+\left(\frac{1}{3}-\frac{1}{3}\right)+\left(\frac{1}{4}-\frac{1}{4}\right)+...+\frac{1}{20}< \frac{1}{4}\)
\(A=1+\frac{1}{20}< \frac{1}{4}\)
\(A=\frac{19}{20}< \frac{1}{4}\)
\(A=\frac{19}{20}< \frac{5}{20}\)
\(A>\frac{1}{4}\)
Đặt \(A=\frac{1}{1\times2\times3}+\frac{1}{2\times3\times4}+\frac{1}{3\times4\times5}+...+\frac{1}{30\times31\times32}\)
\(2A=\frac{2}{1\times2\times3}+\frac{2}{2\times3\times4}+\frac{2}{3\times4\times5}+...+\frac{2}{30\times31\times32}\)
\(=\left(\frac{1}{1\times2}-\frac{1}{2\times3}\right)+\left(\frac{1}{2\times3}-\frac{1}{3\times4}\right)+\left(\frac{1}{3\times4}-\frac{1}{4\times5}\right)+...+\left(\frac{1}{30\times31}-\frac{1}{31\times32}\right)\)
\(=\frac{1}{1\times2}-\frac{1}{2\times3}+\frac{1}{2\times3}-\frac{1}{3\times4}+\frac{1}{3\times4}-\frac{1}{4\times5}+...+\frac{1}{30\times31}-\frac{1}{31\times32}\)
\(=\frac{1}{1\times2}-\frac{1}{31\times32}\)
\(=\frac{1}{2}-\frac{1}{992}\)
\(=\frac{495}{992}\)
\(\Rightarrow A=\frac{495}{992}\div2=\frac{495}{1984}\)
\(\frac{1}{1\times2\times3}+\frac{1}{2\times3\times4}+\frac{1}{3\times4\times5}+...+\frac{1}{30\times31\times32}\)
\(=\frac{1}{2}\times\left(\frac{1}{1\times2\times3}+\frac{1}{2\times3\times4}+\frac{1}{3\times4\times5}+...+\frac{1}{30\times31\times32}\right)\)
\(=\frac{1}{2}\times\left(\frac{1}{1\times2}-\frac{1}{2\times3}+\frac{1}{2\times3}-\frac{1}{3\times4}+\frac{1}{3\times4}-\frac{1}{4\times5}+...+\frac{1}{30\times31}-\frac{1}{31\times32}\right)\)
\(=\frac{1}{2}\times\left(\frac{1}{1\times2}-\frac{1}{31\times32}\right)\)
\(=\frac{1}{2}\times\frac{990}{1984}\)
\(=\frac{990}{3968}=\frac{495}{1984}\)
S = \(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{2013.2014.2015}\)
S = \(\frac{1}{2}.\left(\frac{3-1}{1.2.3}+\frac{4-2}{2.3.4}+....+\frac{2015-2013}{2013.2014.2015}\right)\)
S = \(\frac{1}{2}.\left(\frac{3}{1.2.3}-\frac{1}{1.2.3}+\frac{4}{2.3.4}-\frac{2}{2.3.4}+...+\frac{2015}{2013.2014.2015}-\frac{2013}{2013.2014.2015}\right)\)
S = \(\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{2013.2014}-\frac{1}{2014.2015}\right)\)
S = \(\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{2014.2015}\right)\)
S = \(\frac{1}{2}.\frac{2029104}{4058210}\)
S = \(\frac{1014552}{4058210}\)
=1/1.2.3+1/2.3.4+....+1/37.38.39
=1/1.2-1/2.3+1/2.3-1/3.4+...+1/37.38-1/38.39
=1/1.2-1/38.39
=1/2-1/38.39
=370/7410
bạn ơi, mình dùng dấu nhân bằng dấu chấm bạn nha( còn dấu ... thì bình thường)
mình chắc chắn đúng. cái này bạn học toán phần nâng cao lớp 5 dạng sai phân.
\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+......+\frac{1}{48.49.50}\)
\(=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+....+\frac{1}{48.49}-\frac{1}{49.50}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{49.50}\right)\)
\(=\frac{1}{2}.\frac{612}{1225}=\frac{612}{2450}=\frac{306}{1225}\)
Do not ask why hay quá!
Đặt \(T=\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{48.49.50}\)
Ta xét:
\(\frac{1}{1.2}-\frac{1}{2.3}=\frac{1}{1.2.3}\);\(\frac{1}{2.3}-\frac{1}{3.4}=\frac{1}{2.3.4}\);. . . ; \(\frac{1}{48.49}-\frac{1}{49.50}=\frac{1}{48.49.50}\)
Rút ra dạng tổng quát,ta có: (mình nói thêm nhé)
\(\frac{1}{n\left(n+1\right)}-\frac{1}{n\left(n+1\right)\left(n+2\right)}=\frac{1}{n\left(n+1\right)\left(n+2\right)}\)
\(\Rightarrow2T=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{48.49}-\frac{1}{49.50}\)
Ta nhận thấy: \(-\frac{1}{2.3}+\frac{1}{2.3}=0\);\(-\frac{1}{3.4}+\frac{1}{3.4}=0\);.....
\(\Rightarrow2T=\frac{1}{1.2}-\frac{1}{49.50}=\frac{612}{1225}\)
\(\Rightarrow T=\frac{612}{\frac{1225}{2}}=\frac{306}{1225}\)
Vậy .. . .
=1/1x2-1/2x3+1/2x3-1/3x4+...+1/98x99-1/99x100
=1/2-1/9900
=4949/9900
`A=1/[1xx2xx3]+1/[2xx3xx4]+1/[3xx4xx5]+....+1/[98xx99xx100]`
`A=1/2xx(2/[1xx2xx3]+2/[2xx3xx4]+2/[3xx4xx5]+....+2/[98xx99xx100])`
`A=1/2xx(1/[1xx2]-1/[2xx3]+1/[2xx3]-1/[3xx4]+1/[3xx4]-1/[4xx5]+....+1/[98xx99]-1/[99xx100])`
`A=1/2xx(1/[1xx2]-1/[99xx100])`
`A=1/2xx(1/2-1/9900)`
`A=1/2xx(4950/9900-1/9900)`
`A=1/2xx4949/9900`
`A=4949/19800`
\(A=\dfrac{3-1}{1.2.3}+\dfrac{4-2}{2.3.4}+\dfrac{5-3}{3.4.5}+...+\dfrac{100-98}{98.99.100}\)
\(A=\left(\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{3.4}-\dfrac{1}{4.5}+...+\dfrac{1}{98.99}-\dfrac{1}{99.100}\right):2\)
\(A=\left(\dfrac{1}{2}-\dfrac{1}{6}+\dfrac{1}{12}-\dfrac{1}{20}+...+\dfrac{1}{9702}-\dfrac{1}{990}\right):2\)
\(A=\left(\dfrac{1}{2}-\dfrac{1}{990}\right):2\)
\(A=\dfrac{4949}{9900}:2\)
\(A=\dfrac{4949}{19800}\)
\(\frac{1}{2\cdot3\cdot4}+\frac{1}{3\cdot4\cdot5}+....+\frac{1}{39\cdot40\cdot41}\)
Đặt \(A=\frac{1}{2\cdot3\cdot4}+\frac{1}{3\cdot4\cdot5}+...+\frac{1}{39\cdot40\cdot41}\)
\(A=\frac{4-2}{2\cdot3\cdot4}+\frac{5-3}{3\cdot4\cdot5}+....+\frac{41-39}{39\cdot40\cdot41}\)
\(A=\frac{2}{2\cdot3}+\frac{2}{3\cdot4}+\frac{2}{4\cdot5}+...+\frac{2}{39\cdot40}+\frac{2}{40\cdot41}\)
\(A=\frac{1}{2}\cdot\left(\frac{1}{1\cdot2}-\frac{1}{3\cdot4}+\frac{1}{3\cdot4}-\frac{1}{4\cdot5}+....+\frac{1}{39\cdot40}-\frac{1}{40\cdot41}\right)\)
\(A=\frac{1}{2}\cdot\left(\frac{1}{1\cdot2}-\frac{1}{40\cdot41}\right)\)
\(A=\frac{1}{2}\cdot\frac{819}{1640}\)
\(A=\frac{819}{3280}\)