Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(A=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)
\(A=1-\frac{1}{100}\)
\(A=\frac{99}{100}\)
2\(\frac{2}{12}\)+ X = \(\frac{5}{7}\)+ \(\frac{8}{12}\)
\(\frac{13}{6}\)+ X=\(\frac{29}{21}\)
X= \(\frac{29}{21}\)- \(\frac{13}{6}\)
X=\(\frac{-11}{14}\)
\(|2^2_{12}\)\(+x=\frac{5}{7}+\frac{8}{12}\)
\(2+x=\frac{5}{7}+\frac{1}{2}\)
\(2+x=\frac{17}{14}\)
\(x=\frac{17}{14}-2\)
\(x=\frac{-11}{14}\)
\(9\frac{5}{34}-12+5\)
\(9\frac{5}{34}=\frac{311}{34}\)
\(\Rightarrow9\frac{5}{34}-12+5\)
\(=\frac{311}{34}-12+5\)
\(=-\frac{97}{34}+5\)
\(=\frac{73}{34}\)
Xin lỗi mk nhầm
đề là:
\(1\cdot2\cdot3\cdot4\cdot...\cdot99999999999+\left(\frac{1}{2}+\frac{2}{1}+0,5-1+3-5\right)\)
\(2\frac{4}{3}+\frac{4}{12}=\frac{2.3+4}{3}+\frac{4}{12}=\frac{10}{3}+\frac{4}{12}=\frac{40}{12}+\frac{4}{12}=\frac{44}{12}=\frac{11}{3}\)
\(2\frac{4}{3}=\frac{10}{3}\)
\(\frac{10}{3}+\frac{4}{12}=\frac{120}{36}+\frac{12}{36}\)
\(=\frac{132}{36}=\frac{22}{6}=\frac{11}{3}\)
\(12\frac{4}{5}\)=\(\frac{64}{5}\).
Ta có :
\(\frac{64}{5}+\frac{4}{5}=\frac{68}{5}\)
\(12\frac{4}{5}+\frac{4}{5}=\frac{64}{5}+\frac{4}{5}=\frac{68}{5}\)
đặt A=\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{999.1000}+1\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{999}-\frac{1}{1000}+1\)
\(=1-\frac{1}{1000}+1\)
\(=\frac{1999}{1000}\)
=60 k mk nha
12 x \(3\frac{4}{2}\)
= 12 x \(\frac{10}{2}\)
= \(\frac{12X10}{2}\)
= \(\frac{120}{2}\)= 60