
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


\(\frac{sinx+\left(cosx-1\right)}{1-cosx}=\frac{2cosx}{sinx-\left(cosx-1\right)}\Rightarrow sin^2x-\left(cosx-1\right)^2=2cosx-2cos^2x\)
\(\Rightarrow sin^2x-cos^2x+2cosx-1=2cosx-2cos^2x\Rightarrow sin^2x+cos^2x-1=0\)
=>1-1=0 luôn đúng =>dpcm

a, Ta có: 1 - cos x sin x = sin x 1 + cos x <=> 1 - cos x 1 + cos x = sin 2 x <=> sin 2 + cos 2 = 1 (luôn đúng)
Từ đó ta có điều phải chứng minh
b, Ta có VT = sin 2 x + 1 + cos x 2 sin x ( 1 + cos x ) = 2 + 2 cos x sin x ( 1 + cos x ) = VT => DPCM

a/\(cot^2x.tan^2x+2sinx.cosx=1+2sinx.cosx=sin^2x+cos^2x+2sinx.cosx=\left(sinx+cosx\right)^2\)
b/ \(sin^4x+cos^4x=\left(sin^2x+cos^2x\right)^2-2sin^2x.cos^2x=1-2sin^2x.cos^2x\)

Bạn vẽ tam giác vuông ra.
Lập cos của góc x
Đặt cos x vào thay bằng các cạnh
Giải vế phải sẽ ra vế trái
=> Điều trên đúng

xem câu đầu ở đây nè https://olm.vn/hoi-dap/question/1248282.html
