\(12^3x3^3=\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(12^3\cdot3^3=\left(12\cdot3\right)^3=36^3=46656\)

Ủng hộ mk nhơ!^_^

3 tháng 7 2016

123x33=(12x3)3=363=46656

ê ku dạng nào z

tui cg l 6

24 tháng 6 2017

Ta có :

\(A=\dfrac{1}{2.2}+\dfrac{1}{3.3}+\dfrac{1}{4.4}+.................+\dfrac{1}{99.99}+\dfrac{1}{100.100}\)

Ta thấy :

\(\dfrac{1}{2.2}< \dfrac{1}{1.2}\)

\(\dfrac{1}{3.3}< \dfrac{1}{2.3}\)

.............................

\(\dfrac{1}{99.99}< \dfrac{1}{98.99}\)

\(\dfrac{1}{100.100}< \dfrac{1}{99.100}\)

\(\Rightarrow A< \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+..................+\dfrac{1}{98.99}+\dfrac{1}{99.100}\)

\(\Rightarrow A< \dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...........+\dfrac{1}{98}-\dfrac{1}{99}+\dfrac{1}{99}-\dfrac{1}{100}\)

\(\Rightarrow A< 1-\dfrac{1}{100}=\dfrac{99}{100}\)

\(\Rightarrow A< \dfrac{99}{100}\)

24 tháng 6 2017

\(A=\dfrac{1}{2.2}+\dfrac{1}{3.3}+\dfrac{1}{4.4}+.....+\dfrac{1}{99.99}+\dfrac{1}{100.100}\)

\(A< \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+.....+\dfrac{1}{98.99}+\dfrac{1}{99.100}\)
\(A< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+.....+\dfrac{1}{98}-\dfrac{1}{99}+\dfrac{1}{99}-\dfrac{1}{100}\)

\(A< 1-\dfrac{1}{100}\)

\(A< \dfrac{99}{100}\)

\(A< B\)

7 tháng 7 2017

 \(\frac{1}{2\cdot2}+\frac{1}{3\cdot3}+\frac{1}{4\cdot4}+....+\frac{1}{10\cdot10}\)

Ta có : 

\(\frac{1}{2\cdot2}< \frac{1}{1\cdot2}\)

\(\frac{1}{3\cdot3}< \frac{1}{2\cdot3}\)

\(\frac{1}{4\cdot4}< \frac{1}{3\cdot4}\)

.....................................

\(\frac{1}{10\cdot10}< \frac{1}{9\cdot10}\)

Ta có : 

\(\frac{1}{2\cdot2}+\frac{1}{3\cdot3}+\frac{1}{4\cdot4}+...+\frac{1}{10\cdot10}< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{9\cdot10}\)

\(\frac{1}{2\cdot2}+\frac{1}{3\cdot3}+\frac{1}{4\cdot4}+...+\frac{1}{10\cdot10}< \frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\)

\(\frac{1}{2\cdot2}+\frac{1}{3\cdot3}+\frac{1}{4\cdot4}+...+\frac{1}{10\cdot10}< \frac{1}{1}-\frac{1}{10}\)

\(\frac{1}{2\cdot2}+\frac{1}{3\cdot3}+\frac{1}{4\cdot4}+...+\frac{1}{10\cdot10}< \frac{9}{10}\)

\(\Rightarrow\frac{1}{2\cdot2}+\frac{1}{3\cdot3}+\frac{1}{4\cdot4}+...+\frac{1}{10\cdot10}< \frac{9}{10}< 1\)

11 tháng 6 2018

Đặt \(B=\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+...+\frac{1}{10.10}\)

\(\Rightarrow B< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{9.10}\)

\(\Rightarrow B< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{9}-\frac{1}{10}\)

\(\Rightarrow B< 1-\frac{1}{10}< 1\)

\(\Rightarrow B< 1\left(đpcm\right)\)

14 tháng 5 2019

\(-\frac{5}{28}\)

15 tháng 5 2019

\(\frac{-3}{7}.\frac{5}{12}+\frac{3}{7}.\frac{7}{12}+\frac{-3}{12}\)

\(=\frac{3}{7}.\frac{-5}{12}+\frac{3}{7}.\frac{7}{12}+\frac{-1}{4}\)

\(=\frac{3}{7}.\left(\frac{-5}{12}+\frac{7}{12}\right)+\frac{-1}{4}\)

\(=\frac{3}{7}.\frac{2}{12}+\frac{-1}{4}\)

\(=\frac{3}{7}.\frac{1}{6}+\frac{-1}{4}\)

\(=\frac{3}{42}+\frac{-1}{4}\)

\(=\frac{1}{14}-\frac{1}{4}\)

\(=\frac{4}{56}-\frac{14}{56}\)

\(=\frac{-10}{56}=\frac{-5}{28}\)

4 tháng 8 2017

Bài 1: Tính ( hợp lý nếu có thể )

\(A=\dfrac{-3}{8}+\dfrac{12}{25}+\dfrac{5}{-8}+\dfrac{2}{-5}+\dfrac{13}{25}\)

\(=\left(\dfrac{-3}{8}+\dfrac{5}{-8}\right)+\left(\dfrac{12}{25}+\dfrac{13}{25}\right)+\dfrac{2}{-5}\)

\(=-1+1+\dfrac{2}{-5}\)

\(=0+\dfrac{2}{-5}\)

\(=\dfrac{2}{-5}\)

\(B=\dfrac{-3}{15}+\left(\dfrac{2}{3}+\dfrac{3}{15}\right)\)

\(=\left(\dfrac{-3}{15}+\dfrac{3}{15}\right)+\dfrac{2}{3}\)

\(=0+\dfrac{2}{3}\)

\(=\dfrac{2}{3}\)

\(C=\dfrac{-5}{21}+\left(\dfrac{-16}{21}+1\right)\)

\(=\left(\dfrac{-5}{21}+\dfrac{-16}{21}\right)+1\)

\(=-1+1\)

\(=0\)

\(D=\left(\dfrac{-1}{6}+\dfrac{5}{-12}\right)+\dfrac{7}{12}\)

\(=\left(\dfrac{5}{-12}+\dfrac{7}{12}\right)+\dfrac{-1}{6}\)

\(=\dfrac{1}{6}+\dfrac{-1}{6}\)

\(=0\)

4 tháng 8 2017

Bài 2: Tìm x,biết:

a) \(x+\dfrac{2}{3}=\dfrac{4}{5}\)

\(x=\dfrac{4}{5}-\dfrac{2}{3}\)

\(x=\dfrac{2}{15}\)

Vậy \(x=\dfrac{2}{15}\)

b) \(x-\dfrac{2}{3}=\dfrac{7}{21}\)

\(\Rightarrow x-\dfrac{2}{3}=\dfrac{1}{3}\)

\(x=\dfrac{1}{3}+\dfrac{2}{3}\)

\(x=\dfrac{3}{3}=1\)

Vậy \(x=1\)

c) sai đề hay sao ấy bạn.bỏ dấu - ở x thì đúng đề.mk giải luôn nha!

\(x-\dfrac{3}{4}=\dfrac{-8}{11}\)

\(x=\dfrac{-8}{11}+\dfrac{3}{4}\)

\(x=\dfrac{1}{44}\)

Vậy \(x=\dfrac{1}{44}\)

d) \(\dfrac{11}{12}-\left(\dfrac{2}{5}+x\right)=\dfrac{2}{3}\)

\(\dfrac{2}{5}+x=\dfrac{11}{12}-\dfrac{2}{3}\)

\(\dfrac{2}{5}+x=\dfrac{1}{4}\)

\(x=\dfrac{1}{4}-\dfrac{2}{5}\)

\(x=-\dfrac{3}{20}\)

Vậy \(x=-\dfrac{3}{20}\)

14 tháng 8 2017

a, 3/2 + 3/6 + 3/12 + . . . + 3/90

= 3/1*2 + 3/2*3 + 3/3*4 + . . . + 3/9*10

= 1/1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + . . . + 1/9 - 1/10

= 1/1 - 1/10 = 9/10

Vậy a = 9/10

ko chắc chắn lắm