![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
{23 - [15-(27 - 25)2] : (32 . 77 - 22 . 13)} : (3 + 8)1
= {23 - [15- 22 ] : (9 . 77 -4 . 13} : 11
= {23 - [15 - 4 ] : ( 693 - 52 ) } :11
= {23 - 11 : 17 } :11
= { 23 - \(\frac{11}{17}\) } : 11
= \(\frac{380}{17}\) : 11
= \(\frac{380}{187}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
CM M>1/4 ?
Ta có: \(M=\frac{1}{3.3}+\frac{1}{4.4}+...+\frac{1}{50.50}\)
\(M=\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{50^2}\)
\(M>\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{50.51}\)
\(=\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{50}-\frac{1}{51}\)
\(=\frac{1}{3}-\frac{1}{51}\)
\(=\frac{16}{51}>\frac{16}{64}=\frac{1}{4}\)
=> đpcm
![](https://rs.olm.vn/images/avt/0.png?1311)
\(S=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{10}}\)
\(2S=2+1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^9}\)
\(2S-S=\left(2+1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^9}\right)+\left(1+\frac{1}{2}+...+\frac{1}{2^{10}}\right)\)
\(2S-S=S=2-\frac{1}{2^{10}}\)
\(S=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{10}}\)
\(2S=2\left(1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{10}}\right)\)
\(2S=3+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^9}\)
\(S=2S-S\)
\(S=3+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^9}-\left(1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{10}}\right)\)
\(S=3+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^9}-1-\frac{1}{2}-\frac{1}{2^2}-\frac{1}{2^3}-...-\frac{1}{2^{10}}\)
\(S=2-\frac{1}{2^{10}}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\left(3x-2\right)^3\cdot4=256\)
\(\left(3x-2\right)^3=256:4\)
\(\left(3x-2\right)^3=64\)
\(\left(3x-2\right)^3=4^3\)
\(\Rightarrow3x-2=4\)
\(3x=4+2\)
\(3x=6\)
\(x=6:3\)
\(x=2\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Số các số hạng là:(n-1):1+1=n(số hạng)
Tổng các số hạng là:(n+1) nhân n:2=n
số số hạng:(n-1):1+1
tổng các số hạng:(n+1).số số hạng :2